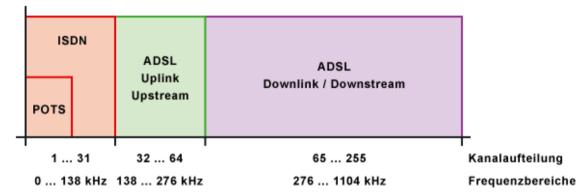
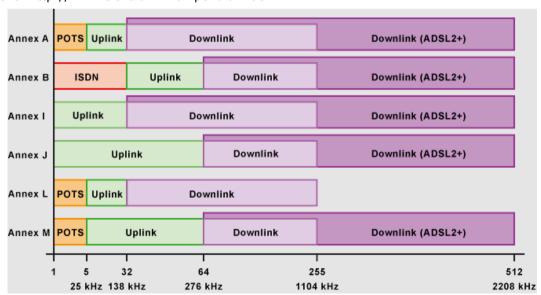
Name:	
xDSL-Technologien	


Klasse:	
Werner-vo	n-Siemens-Schule

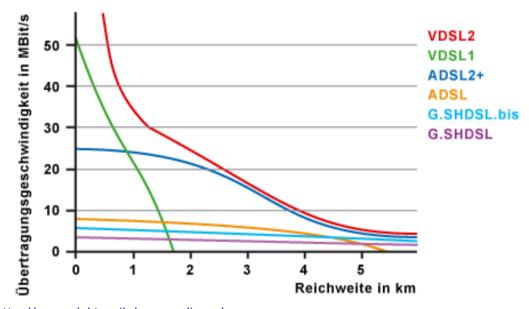
Datum: ______ Arbeitsblatt


xDSL¹ Technologien

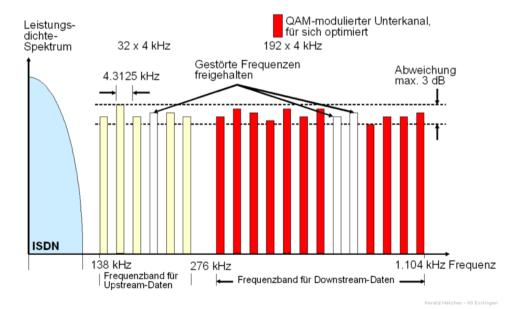
Eckdaten zu den aktuellen xDSL-Technologien:

	ADSL	ADSL2	ADSL2+	HDSL#	SHDSL	VDSL
Einsatz- gebiete	Auslaufend	Auslaufend - Privat	- aktuell - Privat - Gewerbe	- Gewerbe	- Gewerbe	- Privat - Gewerbe
Upload*	512	1.000	1.000	2.048	192 - 2.320	3.000
Download*	8.000	12.000	24.000	2.048	192 - 2.320	50.000
Reichweite	ca. 5km	ca. 5 km	ca. 5km	ca. 2 km	bis 6 km	bis 1 km
Frequenz- spektrum	138-1104kHz	138-1.104kHz	138-2208kHz	0-392kHz** 10-175kHz***	0-1.395kHz**	138kHz- 12 MHz
Leitungs- anzahl	2	2	2	4-6	2	2
Standards	G.992.1	G.992.3	G.992.5,	G.991.1	G.991.2 SHDSL, G.SHDSL, ESHDSL	G.993-1 A, B, C

Quelle: http://www.elektronik-kompendium.de



Quelle: http://www.elektronik-kompendium.de


1 xDSL: Digital Subscriber Line; Digitale Teilnehmeranschlussleitung; x steht für eine beliebige Variante s. Tabelle

Name:	Klasse:	Datum:	
xDSI -Technologien	Werner-von-Siemens-Schule	Arbeitsblatt	

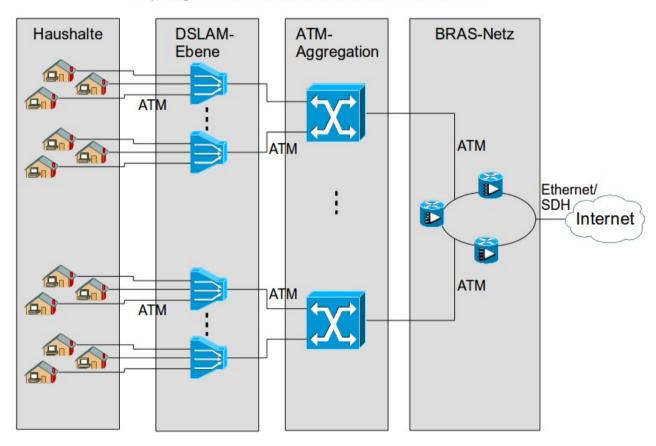
Unterschieden wird bei ADSL2 G.992.1 **Annex A (over POTS²)** und **Annex B (over ISDN)**. In Deutschland kommt überwiegend Annex B zum Einsatz, da mit dieser Variante sowohl ein analog wie auch ein ISDN-Anschluss unterhalb des DSL-Bereichs umgesetzt werden kann. In Ländern, in den überwiegend analoge Telefonanschlüsse vermarktet wurden, wird Annex A eingesetzt. Der Einsatz von Annex B führt zu einer Reduktion der maximalen Übertragungsrate, da die **dämpfungsärmsten** und **reichweitenstärksten** Frequenzbereiche für ISDN reserviert sind und somit nicht für DSL genutzt werden können. Die Reduktion der Reichweite kann mit ca. 500 m und die Reduktion der Übertragungsrate mit ca. 1,5 Mbit/s angenommen werden. Weitere Varianten sind ITU G.992.3/5 <u>Annex I</u> und J mit bis zu 3,5 Mbit/s durch Nutzung des für POTS/ISDN vorgesehenen unteren Frequenzbereichs.

Quelle: http://www.elektronik-kompendium.de

QAM: Quadraturamplitudenmodulation; Quelle: Dr. Harald Melcher, Esslingen

2 POTS: plain old telefone system; herkömmlicher analog Anschluss

Name:	Klasse:	Datum:
xDSL-Technologien	Werner-von-Siemens-Schule	Arbeitsblatt


Beschaltung

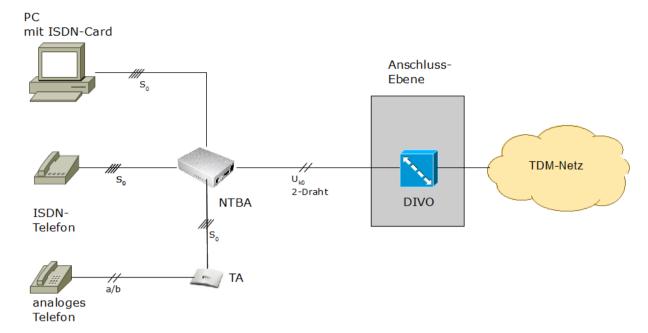
Allgemein gelten DSL-Anschlüsse als hochbitratige Anschlüsse. Eine starke Häufung solcher Anschlüsse in einem Erdkabel (Bündel) ist zu vermeiden, da es ansonsten zu gegenseitigen Störungen kommen kann. Um diese Störungen zu reduzieren, wird eine maximale Anzahl an hochbitratigen Anschlüssen innerhalb der Bündel zugelassen. Über den sogenannten Beschaltungsgrad wird der aktuelle Stand festgehalten.

Übertragungstechnologie

Bei ADSL und seinen Varianten kommt ATM als Übertragungstechnologie zwischen dem DSL-Modem und dem DSL-Access Multiplexer (DSL-AM) zum Einsatz. ATM wird dabei bis hinein ins Core-Netz auch für das Transportnetz verwendet.

Ursprünglicher Netzaufbau im ADSL/ADSL2 Umfeld

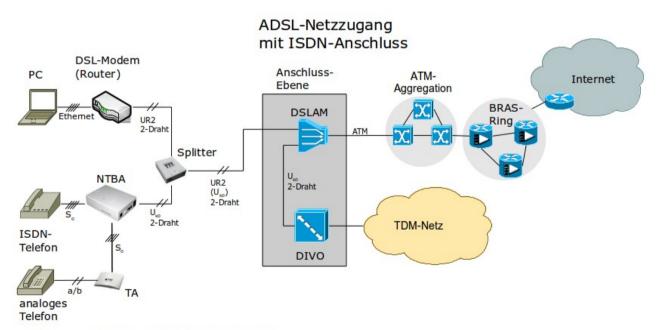
Mittelfristig wird diese Struktur aufgrund der fehlenden Multicast-Eigenschaft gegen Ethernet (s. VDSL) ersetzt. Das Multicast-Feature, also die Möglichkeit Datenströme bis hin zum DSL-AM einmalig (unicast) und von dort auf die einzelnen Teilnehmer aufzuteilen (multicast) wird insbesondere für die Verteilung von Fernsehprogrammen im IPTV Umfeld benötigt.


Name:	
xDSL-Technologien	

Klasse:	
Werner-vo	n-Siemens-Schule

Datum:

Arbeitsblatt


ISDN-Anschluss

NTBA: network termination basic rate access

TA: terminal adapter

DIVO: Digitale Vermittlung Ortsnetz

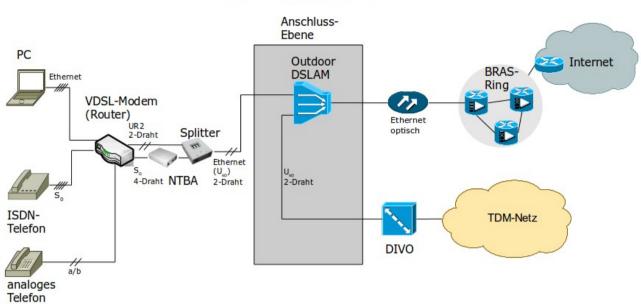
ADSL: asymmetrical digital subscriber line

ATM: asynchronous transfer mode

UR2: Spezifikation für DSL-Modems durch Telekom definiert; ursprünglich technische Richtlinie 1TR112

DSLAM: digital subscriber line access multiplexer; netzseitiges "DSL-Modem"

BRAS: broadband remote access server; DSL-Einwahlserver PPPoE Gegenstelle, auch access concentrator (AC)

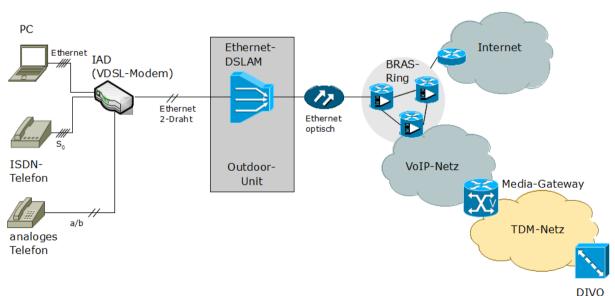

NTBA: network termination basic rate access

TA: terminal adapter

DIVO: Digitale Vermittlung Ortsnetz TDM: time division multiplex

Arbeitsblatt

VDSL-Netzzugang mit ISDN-Anschluss

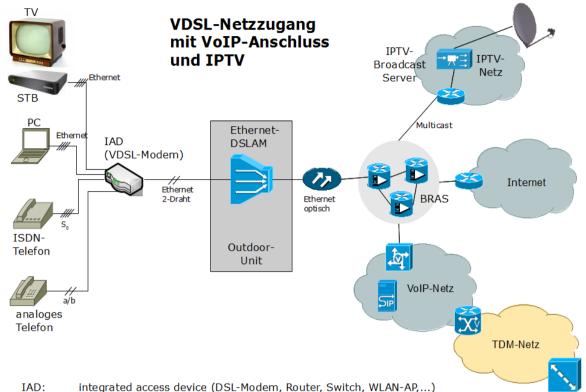


VDSL: very high speed digital subscriber line

DSLAM: digital subscriber line access multiplexer; netzseitiges "DSL-Modem"

BRAS: broadband remote access server; DSL-Einwahlserver PPPoE Gegenstelle, auch access concentrator (AC)

VDSL-Netzzugang mit VoIP-Anschluss

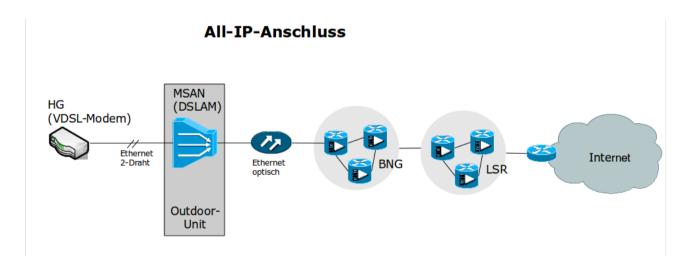

IAD: integrated access device (DSL-Modem, Router, Switch, WLAN-AP,...)

VDSL: very high speed digital subscriber line

DSLAM: digital subscriber line access multiplexer; netzseitiges "VDSL-Modem"

BRAS: broadband remote access server; DSL-Einwahlserver PPPoE Gegenstelle, auch access concentrator (AC)

Arbeitsblatt



VDSL: very high speed digital subscriber line

DSLAM: digital subscriber line access multiplexer; netzseitiges "VDSL-Modem"

broadband remote access server; DSL-Einwahlserver PPPOE Gegenstelle, auch access concentrator (AC) **BRAS:**

STB: Settop-Box

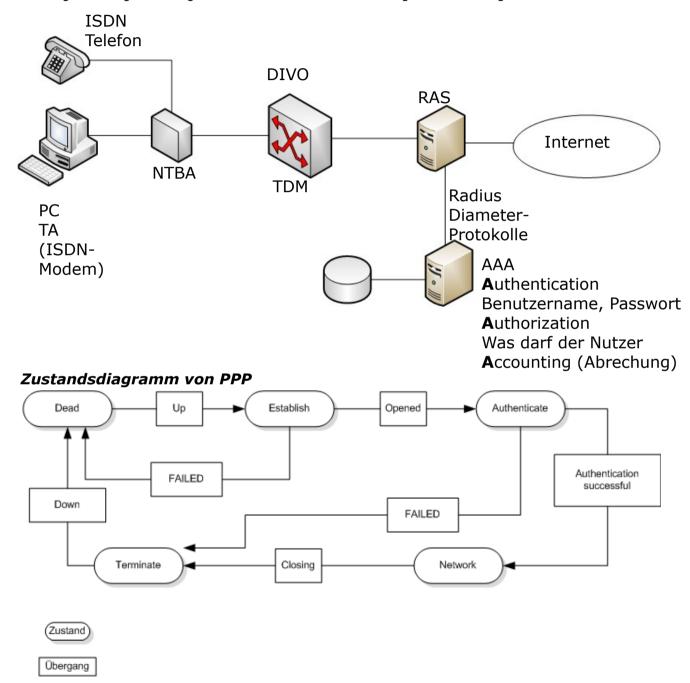
HG: vergleichbar IAD (DSL-Modem, Router, Switch, WLAN-AP,...)

MSAN: multi service access node; Zugangspunkt ins Netz; stellt VDSL, POTS, ISDN, etc. bereit broadband network gateway; vergleichbar mit BRAS kann zusätzlich noch QoS liefern BNG:

LSR: label switch router; Router in einem MPLS-Netz

multiprotocol label switching; Routing anhand von Labeln statt IP-Adressen; ermöglicht schnelleres MPLS:

Routing und QoS; Verbindet Vorteile von ATM und reinen IP-basierten Netzen


Name:	Klasse:	Datum:
xDSL-Technologien	Werner-von-Siemens-Schule	Arbeitsblatt

PPP Point-to-Point-Protocol

Das auf Schicht-2 arbeitende PPP³ dient der Realisierung von Punkt-zu-Punkt-Verbindungen. Ein typisches Anwendungsbeispiel stellt die Anbindung eines Rechners an das Internet über eine Telefonleitung (zB ISDN-Anschluss) dar.

Anders als bei dem einfacheren SLIP⁴ verfügt PPP-Rahmenstruktur über die komplexere, so dass neben der TCP/IP-Protokollfamilie auch eine Vielzahl weiterer Protokolle wie IPX/SPX unterstützt werden⁵.

Das folgende Diagramm zeigt die normalerweise am Verbindungsaufbau beteiligten Netzelemente:

- 3 PPP: Point-to-Point Protocol, RFC 1661
- 4 SLIP: **S**erial **L**ine **IP**, RFC 1055
- 5 Quelle: Net IT Fachqualifikationen Netzwerktechnologien, Verlag Handwerk und Technik, 2009

Name:	Klasse:	Datum:
xDSL-Technologien	Werner-von-Siemens-Schule	Arbeitsblatt

Authentifizierungsprotokolle: PAP - CHAP

Zur Authentifizierung werden u.a. die beiden Protokolle PAP⁶ und CHAP⁷ verwendet. Bei PAP sendet der Client als Initiator eine Nachricht mit den Zugangsdaten (Benutzername und Passwort). Der Server antwortet mit **ACK** oder **NAK**⁸, je nach Situation. Kritisch ist hier, dass die Zugangsdaten im Klartext geschickt werden. In aktuellen Strukturen mit Shared Medien ist dies nicht mehr sicher.

Bei CHAP wird nach einem Verbindungsaufbau eine sogenannte **Challenge** an den Client geschickt. Diese enthält einen Zufallswert, mit dessen Hilfe errechnet der Client aus dem Passwort einen Hash-Wert A. Dieser Hash-Wert wird anschließend in der Response an den Server gesendet. Stimmt der Hash-Wert mit dem erwarteten überein, so erhält der Client eine **SUCCESS**. Andernfalls antwortet der Server mit **FAILURE** und die Verbindung wird abgebaut.

CHAP wurde von Microsoft in zwei Versionen (MS-CHAPv1 und MS-CHAPv2) ergänzt. Diese Varianten sind, obwohl sie nicht das eigentliche CHAP-Protokoll abbilden aufgrund der hohen Verbreitung von Windows häufig anzutreffen.

Die folgenden Abbildungen stellen den Nachrichtenfluss beider Verfahren dar.

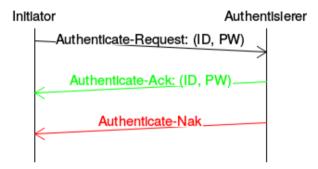
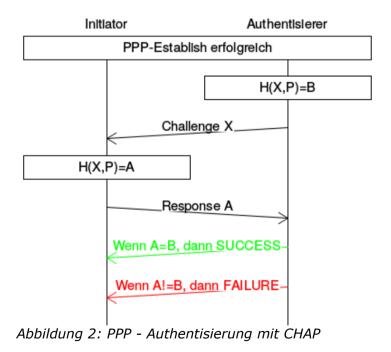
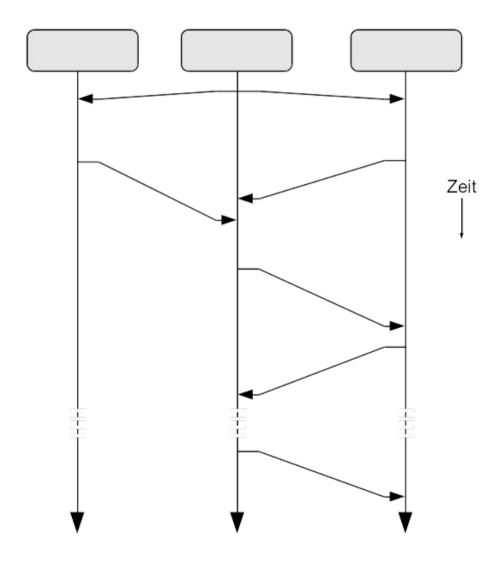



Abbildung 1: PPP - Authentisierung mit PAP

- 6 PAP: Password Authentication Protocol
- 7 CHAP: Challenge Handshake Authentication Protocol
- 8 ACK: acknowledge meint eine positive Antwort; NAK: negative acknowledge bedeutet Ablehnung


Name:	Klasse:	Datum:
xDSL-Technologien	Werner-von-Siemens-Schule	Arbeitsblatt

PPPoE

Das PPPoE⁹ wird bei DSL eingesetzt, um die eigentliche Authentifizierung (**PPP**) durchführen zu können. Im klassischen Festnetz wurde hierzu die Rufnummer des RAS genutzt. Diese existiert im Ethernet nicht, stattdessen sendet der **PPPoE-Client** (meist der DSL-Router) eine Anfrage ähnlich wie bei DHCP ins Netz und erhält ein Session-Angebot vom **BRAS**. Im Anschluss findet der eigentliche Konfigurationsaustausch statt. Als PPPoE-Client kommt ein **PC hinter einem DSL-Modem** oder wie meist üblich der **DSL-Router**. Die folgende Abbildung zeigt den prinzipiellen Ablauf einer PPPoE-Session:

Point to Point Protocol over Ethernet

PPPoE Session Ablauf

Im Anschluss findet über das Point to Point Protocol (PPP) die eigentliche Authentifizierung statt.

Abbildung 3: PPPoE-Session

9 PPPoE: Point to Point Protocol over Ethernet

Name:	Klasse:	Datum:
DSL-Technologien	Werner-von-Siemens-Schule	Arbeitsblatt

PPPoE-Protokollfelder und Inhalte

Das PPPoE-Protokoll wird in den Ethernet-Rahmen eingeschoben¹⁰. Dadurch kann der Payload nicht mehr die vollen 1500 Byte groß werden. Auf Systemen, die PPPoE verwenden muss daher die MTU-Size auf höchstens 1492 Byte verkleinert werden. Die folgende Abbildung zeigt die Schachtelung der Protokolle, sowie die beispielhaft die Inhalte der Felder.

Point to Point Protocol over Ethernet

Rahmenstruktur einer PPPoE Nachricht

DA	SA	Туре	Payload	Prüfsumme
MAC	MAC	0x8863		CRC

Version	Туре	Code	Session ID	Payload Length	PPP-Tags	
0001	0001	0x09	0x0000	0x0004		

Feld	Größe	Werte Beispiel	Bedeutung
Version	4 Bits	0x1	Version des PPPoE Protokolls
Туре	4 Bits	0x1	Type des PPPoE Protokolls
Code	1 Byte	0x09	PPPoE Befehlscode Hier: 0x09 = PADI (s.u.)
Session ID	2 Byte	0x0000	Kennzeichner der Session Zur Identifikation der Session
Payload Length	2 Byte	0x0004	Größe der PPP Nutzdaten
PPP- Tags			PPP Nutzdaten

Code	Kurzform	Bedeutung	
0x07	PADO	PPPoE Active Discovery Offer	
0x09	PADI	PPPoE Active Discovery Initiation	
0x19	PADR	PPPoE Active Discovery Request	
0x65 PADS		PPPoE Active Discovery Session Confirmation	
0xA7	PADT	PPPoE Active Discovery Terminate	

Abbildung 4: PPPoE-Header-Aufbau