
2026/01/09 01:40 1/7 Minix Neo X5 Projektseite

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Minix Neo X5 Projektseite

PROJEKTSEITE IST NOCH IM AUFBAU: REIHENFOLGE STIMMT NOCH NICHT

Projektziel

Basierend auf dem Artikel aus c't 2014 Heft 4 (S.166ff) soll ein Minix Neo X5 (im Folgenden nur noch
Minix genannt) mit einem Debian-System bestückt werden. Auf dieser Basis soll der Minix als Mini-
Server im lokalen Netz dienen und folgende Dienste bereitstellen:

owncloud (zum Sync von Adressen/Kalender mit Android-Geräten und Thunderbird-Clients unter
Windows/Linux)
Dateifreigaben (mit samba)

Die Vorteile des Gerätes gegenüber einem Raspberry Pi sind:

ähnlicher Energieanforderungen
keine Lüfter
integrierter Flash (16GB s.u.)
relativ viel RAM (1GB s.u.)
relativ hohe Rechenpower (1.4GHz Dual Core)

Nachteil: keine Erweiterbarkeit (ohne das Gehäuse zu modifizerieren). Für den Einsatzbereich ist dies
aber kein echter Nachteil.

Vorbereitung oder wie läuft das Ganze ab?

Da das Projekt nicht „plug 'n' play“ ist, sondern relativ viel Handarbeit bedarf ist es sinnvoll sich vorab
mit dem Prozedere auseinander zu setzen. Im Folgenden werden die einzelnen Schritte grob
zusammengefasst, um einen Überblick zu geben.

Debian-VM aufsezten, in der alle Arbeiten durchgeführt werden.1)1.
root-FS(Minix-FS)2) erzeugen, dies wird später das filessystem des Minix (offen)2.
Grundkonfigurationen innerhalb des Minix-FS vornehmen (hier kann das Script aus dem c't3.
Artikel helfen) (offen)
kopieren des Minix-FS auf eine SD-Card kopieren (offen)4.
initramfs erzeugen, das als Boot-Loader fungiert und später den Kernel lädt (offen)5.

Kernel für Minix bauen (hört sich komplizierter an, als es ist) (offen)6.
aus dem initramfs und dem neuen Kernel in ein Kernel-Image generieren. (offen)7.
Kernel-Image auf den Neo X5 flashen (offen)8.

Nun geht's aber endlich los.

Installation der Debian-VM

Für alle weiteren Arbeiten und um das Host-System nicht „zu verschmutzen“ wird empfohlen eine

Last update:
2025/11/19 16:13 allgemein:minix:minix_debian https://www.kopfload.de/doku.php?id=allgemein:minix:minix_debian&rev=1398955825

https://www.kopfload.de/ Printed on 2026/01/09 01:40

virtuelle Maschine zu verwenden. Wem dies zu kompliziert erscheint oder wem es egal ist, Pakete zu
installieren, die nur für dieses Projekt benötigt werden, der kann auch auf einem Debian-basierten
Host-System (z.B. Ubuntu) alle weiteren Arbeiten durchführen.

Windows-User kommen um diesen Schritt nicht herum, da die genutzten Werkzeuge nicht ohne
weiteres unter Windows funktionieren.

Man benötigt zunächst ein Debian-Image (wheezy), welches man im Debian-Download-Bereich
herunterladen kann. Hier wird von einer xfce-dasierten Debian-Version (debian-7.4.0-amd64-
xfce-CD-1.iso) ausgegangen. Eine einfache Netzwerk-Installation (kleinste Variante) sollte auch
ausreichen. Ggf. müssen dann noch einige zusätzliche Pakete geladen werden.

Das Image wird als Installationsmedium in einer neuen Virtual-Box-Maschine eingebunden. Hier die
verwendeten Eckdaten:

Linux/64-bit Debian
384 MB RAM
8GB HDD

Also im wesentlichen die minimalen vorgeschlagenen Werte. Die Installation des OS ist weitgehend
selbsterklärend. Man muss lediglich am Anfang die gewünschte Sprache auswählen. Alle Netzwerk-
Fragen können beliebig beantwortet werden, da keine echte Netzwerkeinbindung benötigt wird. Die
beiden User (root und Hauptnutzer) sowie deren Passwörter sollten notiert werden, da diese später
benötigt werden.

Installation benötigter Pakete für die VM

Damit das Debian-System eine ARM-Architektur bearbeiten kann (root-FS anlegen, ARM-Kernel
kompilieren, etc.) werden diverse Pakete benötigt. Ich spare mir diese jeweils an den benötigten
Stellen zu installieren und mache dies hier gesammelt.

Damit alle Pakete gefunden werden können, benötigt die /etc/sources.list eine Erweiterung, die
man am besten am Ende der Datei anhängt (mit root-Rechten editieren!):

deb http://www.emdebian.org/debian/ sid main

Für die Installation wechselt man in die Debian-VM und startet dort ein Terminal. Innerhalb des
Terminals wechselt man mit su zum root-User, der alle Rechte hat. Das Folge Skript muss demnach
als root ausgeführt werden. Alternativ kann man die Befehle einzeln im Terminal ausführen.

#!/bin/bash

Quellen-Datenbank aktualisiersen, damit die Versionen stimmen.
apt-get update

Installation zur Unterstützung anderer CPU-Typen
apt-get install qemu-user-static binfmt-support debootstrap

Installation aller Tools für die Kernel-Erzeugung
Schlüssel des zusätzlichen Repositories

http://www.debian.org

2026/01/09 01:40 3/7 Minix Neo X5 Projektseite

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

apt-get install emdebian-archive-keyring
apt-get update
Compiler für ARM-Linux
apt-get install gcc-4.7-arm-linux-gnueabihf build-essential git sharutils

Damit sollten die Vorarbeiten abgeschlossen sein.

Anlegen des neuen root-FS

Wir benötigen einen Unterordner in dem das zukünftige root-FS, welches später das Basis-
Filesystem des Minix wird angelegt wird. Um viel Schreibarbeit zu sparen, legen wir wie im c't-Artikel
vorgeschlagen folgenden Ordner an und wechseln in diesen Ordner:

mkdir /home/neo-rootfs
cd /home/neo-rootfs

Man sollte diesen Ordner nicht unter /tmp anlegen, da dieser Ordner standardmäßig bei jedem
Reboot gelöscht wird!

Mit dem folgenden Befehl wird das Grundsystem angelegt. Dies kann einige Zeit in Anspruch nehmen.
Also Geduld!

qemu-debootstrap --verbose --variant=minbase --include=nano,ifupdown,netbase
--arch=armhf wheezy /home/neo-rootfs http://ftp.de.debian.org/debian

Kurze Erläuterung der Parameter:

Parameter Bemerkung

--verbose Gibt alle Schritte im Terminal aus;
Hilft Fehler zu finden

--variant Gibt an, dass die kleinste Debian-Variante verwendet werden soll; hier Minimal Basis
andere sind möglich, blähen das System aber auf

--include Zusätzliche Software, die wir später auf dem Minix benutzen wollen;
hier der Editor nano, Schnittstellen-Tools ifupdown Basis-Netzwerkdienste netbase

--arch Zielarchitektur;
hier ARM-Basiertes-System

Die restlichen Parameter geben die Debian-Version (wheezy) sowie das Ziel (/home/neo-rootfs)
und die Quelle (http:/ftp.de.debian…) an.

Wenn qemu erfolgreich war, dann sollte sinngemäß die folgende Zeile erscheinen:

I: Base system installed successfully.

Im Ordner /home/neo-rootfs sollte sich nun eine neue Linux-Ordnerstruktur befinden. Hier finden
die nächsten Anpassungen statt.

Last update:
2025/11/19 16:13 allgemein:minix:minix_debian https://www.kopfload.de/doku.php?id=allgemein:minix:minix_debian&rev=1398955825

https://www.kopfload.de/ Printed on 2026/01/09 01:40

Minix-FS auf SD-Card kopieren

Zunächst muss der Name der SD-Card gefunden werden. Mit lsblk kann man den Namen finden
oder man benutzt dmesg kurz nach dem einlegen der Karte. Man erhält eine ähnliche Ausgabe:

[6502.829511] sdb: sdb1
[6502.839812] sd 10:0:0:0: [sdb] No Caching mode page found
[6502.839838] sd 10:0:0:0: [sdb] Assuming drive cache: write through
[6502.839850] sd 10:0:0:0: [sdb] Attached SCSI removable disk
[6503.344347] EXT4-fs (sdb1): mounted filesystem with ordered data mode.
Opts: (null)

Bei mir wurde die SD-Card als sdb eingehängt.

Damit es nicht zu Fehlermeldung kommt sollte die SD-Karte zunächst ausgeworfen werden, falls diese
bereits automatisch eingebunden wurde.

umount /media/USER/SDCARD

Für USER und SDCARD müssen selbstverständlich die entsprechenden Werte des eigenen Systems
verwendet werden. (ggf. mit weiteren Partitionen auf der SD-Card wiederholen)

Partitionieren

sudo fdisk /dev/sdb

Mit p3) werden alle Partionen angezeigt. So kann man überprüfen, ob das richtige Gerät ausgewählt
wurde. Ansonsten zerstört man sich u.U. sein Betriebssytem!! Mit d4) (VORSICHT!!) können bereits
vorhandene Partionen gelöscht werden. Nach d muss man per Ziffer die entsprechende Nummer der
Partition angeben (s. p). Mit n5) kann einen neue Partition angelegt werden. Man wird gefragt, ob die
Partition p (primär) oder e (extended) sein soll. Wir benötigen eine primäre Partition: also p. Falls
noch weitere Partitionen benötigt werden, sollte bei den nächsten Fragen entsprechender Platz
freigelassen werden. Zu ersten Testzwecken ist es sinnvoll die gesamte SD-Card zu verwenden. Wir
wählen demnach die Vorgaben als Parameter für den ersten und letzten Sektor.

Filesystem anlegen

Ist das Partionieren erledigt, dann wird das Filesystem eingerichtet. Es wird ein EXT4 benötigt. Als
Name wird linuxroot vorausgesetzt.

sudo mkfs.ext4 -L linuxroot /dev/sdb1

SD-Card mit VM verbinden

Dieser Schritt kann je nach System kompliziert oder sehr simpel werden. Der einfachste Weg ist es

2026/01/09 01:40 5/7 Minix Neo X5 Projektseite

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

die SD-Card als USB-Gerät in die VM einzubinden. Fertig!

Der harte Weg: Die SD-Card wird NICHT als USB-Gerät im Host-System eingebunden, sondern als
eigene Partition. Dann wird es komplizierter. Als Erstes muss man herausfinden, unter welchem
Namen die SD-Card eingebunden wurde.

lsblk

Eine mögliche Ausgabe sieht so aus:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465,8G 0 disk
├─sda1 8:1 0 310,3G 0 part
├─sda2 8:2 0 143G 0 part
├─sda3 8:3 0 1K 0 part
├─sda5 8:5 0 10,6G 0 part
└─sda6 8:6 0 1,9G 0 part [SWAP]
sdb 8:16 0 29,8G 0 disk
└─sdb1 8:17 0 29,8G 0 part

HINWEIS: Über die Speichergröße lässt sich die SD-Card normalerweise leicht ermitteln.

Die SD-Card könnte demnach als /dev/sdb eingebunden sein. Es muss eine VDMK-Datei für
VirtualBox erstellt werden und das Device schreibberechtigt werden (z.B. USER:USER)

sudo chmod 666 /dev/sdb
chown USER:USER sdcard.vmdk
sudo VBoxManage internalcommands createrawvmdk -filename sdcard.vmdk -
rawdisk /dev/sdb

Leider geht nach jedem Reboot die Schreibberechtigung verloren, so dass der chmod Befehl nach
jedem Neustart wiederholt werden muss.

Danach kann die kann man in VirtualBox eine neue Festplatte zu der existierenden Einbinden. Als
„Image“-Datei wird die erzeugte sdcard.vmdk verwendet.

Anpassungen des rootFS

Das neu erzeugte rootFS muss nun noch angepasst werden.

Das Basis System ist zunächst mit englischem Tastaturlayout und falscher Zeitzone konfiguriert. Mit
den folgenden Befehlen wird das rootFS auf deutsche Parameter eingestellt.

Tastatur-Layout auf deutsch ändern:
dpkg-reconfigure locales

Es werden einige perl-Fehler ausgeworfen, die ignoriert werden können. Als Parameter können die
folgenden Werte dienen:

Last update:
2025/11/19 16:13 allgemein:minix:minix_debian https://www.kopfload.de/doku.php?id=allgemein:minix:minix_debian&rev=1398955825

https://www.kopfload.de/ Printed on 2026/01/09 01:40

Parameter Wert
Timezone: 8. Europe/ 6. Berlin
Keymap: 155. pc / qwertz / German / Standard / latin1 - no dead keys
Keyboard: 98. de_DE.UTF-8 UTF-8

Weiterhin sollte im rootFS ein Passwort für den Admin (root) gesetzt werden, da ansonsten kein
Zugriff möglich ist:

passwd

SD-Card partitionieren und formatieren

Zunächst werden alle Partitionen auf der SD-Card gelöscht. # SD-Card mit neuer Filesystem
formatieren. Die SD-Card wurde als /dev/sdb eingehängt. mkfs.ext4 -L linuxroot /dev/sdb1 #
Formatierte SD-Card einhängen unter /mnt/sdcard (vorher mit mkdir /mnt/sdcard Einhängepunkt
erzeugen) mount -t ext4 /dev/sdb1 /mnt/sdcard/

root-FS auf SD-Card kopieren

neues root-FS auf SD-Card kopieren -a für alle Links -v für zusätzliche Ausgabe während des
Kopiervorgangs

cp -av /home/neo-rootfs/* /mnt/sdcard/

Technische Daten des Minix Neo X5

Hier die technischen Eckdaten des Minix Neo X5: (Auszug aus dem offiziellen Datenblatt):

Type Beschreibung
Prozessor Rockchip RK3066 Dual Core Cortex A9 1.4GHz (max. 1.6GHz)
GPU Quad Core Mali 400 (OpenGL ES 2.0/1.1, Opven VG1.1, Flash 11.1)
RAM 1GB DDR3
Int. Speicher 16GB NAND Flash
Funkschnittstellen 802.11 b/g/n WiFi, Bluetooth, 3G über USB-Dongle (nicht enthalten)
OS Android 4.1.1 Jelly Bean
Video Output HDMI 1.4a, Full HD 1080p, 3D Filme unterstützt
Audio Output HDMI 1.4a, optisch, S/PDIF, analog (Kopfhörer, Klinke)
Sonstige Anschlüsse

RJ-45 Ethernet (10/100 Mbit/s)
SD/MMC Slot (SD 3.0, MMC 4.41)
3x USB 2.0 Ports
Micro USB OTG Port
Infrarot-Empfänger (Fernbedienung ist enthalten)

2026/01/09 01:40 7/7 Minix Neo X5 Projektseite

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Type Beschreibung
Schlitz für Kensignton Schloss

Stromversorgung 5V, 3A Adpater (enthalten), Gerät benötigt laut Hersteller weniger als 1A

Videoformate AVI/RM/RMVB/MKV/WMV/MOV/MP4/WEBM/DAT(VCD format)/
VOB/MPEG/MPG/FLV/ASF/TS/TP/3GP u.a.

Info-Sammlung

Unsortierte Infosammlung zum Thema:

Fast perfektes Skript um Ubuntu 12.04 vorzubereiten:
http://www.myria.de/computer/864-linux-auf-dem-minix-x5 Lehnt sich stark an das c't-Skript an, ist
aber ausgereifter. Einige Probleme sind allerdings immer noch enthalten.

gcc-Symlink fehlt
Variablen sind nicht konsequent umgesetzt

Linux permanent Boot statt nur im Recovery-Modus:
http://minixforums.com/threads/linux-on-minix-x5.1388/page-16

1)

kann entfallen, wenn man ohnehin unter Debian arbeitet
2)

FS: filesystem
3)

p: print
4)

d: delete
5)

n: new

From:
https://www.kopfload.de/ - kopfload - Lad Dein Hirn auf!

Permanent link:
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_debian&rev=1398955825

Last update: 2025/11/19 16:13

http://www.myria.de/computer/864-linux-auf-dem-minix-x5
http://minixforums.com/threads/linux-on-minix-x5.1388/page-16
https://www.kopfload.de/
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_debian&rev=1398955825

	[Minix Neo X5 Projektseite]
	Minix Neo X5 Projektseite
	Projektziel
	Vorbereitung oder wie läuft das Ganze ab?
	Installation der Debian-VM
	Installation benötigter Pakete für die VM
	Anlegen des neuen root-FS
	Minix-FS auf SD-Card kopieren
	Partitionieren

	Filesystem anlegen
	SD-Card mit VM verbinden

	Anpassungen des rootFS
	SD-Card partitionieren und formatieren
	root-FS auf SD-Card kopieren
	Technische Daten des Minix Neo X5

	Info-Sammlung

