
2026/01/31 08:39 1/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Minix Neo X5 build_mini_x5_sys_v2.sh

Es wird keine Haftung für Schäden, die durch hier veröffentlichte Programme verursacht
werden, übernommen. Nutzung auf eigene Gefahr!

Das folgende Skript basiert auf verschiedenen Quellen. Besonders hervorzuheben ist die Seite
myria.de. Diese Seite legt die Basis für diese Arbeit. Nochmals vielen Dank an dieser Stelle!! Da auch
ich nicht davon ausgehen kann keine Fehler mehr im Code zu haben, bitte im mir eine kurze
Nachricht zu kommen zu lassen. Dazu kann das Ergänzungen-Formular am Ende der Seite
verwendet werden.

Movitation

Die Basis erzeugte einige Fehler und mich störte, dass das Flash-Tool rkflashtool mit einem Skript
ausgeliefert wird, dass die Hardware potentiell fehlerhaft beschreiben könnte (s. change notes).
Weiterhin wollte ich statt Ubuntu 12.04 LTS (Precise Pangolin) die aktuelle Debian 7 (Wheezy)
Distribution nutzen.

Bedienungsanleitung

Im wesentlich funktioniert das Skript auf der myria-Seite beschrieben. Damit es nicht mit dem Original
verwechselt wird habe ich es build_minix_x5_sys_v2.sh genannt.

Das Skript muss mit root-Rechten aufgerufen werden:

build_minix_x5_sys_v2.sh [COMMAND]

Als COMMAND können folgende Parameter genutzt werden.

Als Hilfe wird folgender Text angezeigt:

Optionen:
prepare System vorbereiten, nötige Pakete installieren
bootstrap .. System vorbereiten (prepare) und Dateien für rootfs
herunterladen (bootstrap)
kernel Kernel herunterladen und compilieren
chrootfs ... mit chroot in das rootfs wechseln und das minix-system
vorkonfigurieren
mksystem ... führt prepare, bootstrap, chrootfs und kernel nacheinander aus

copy2sd System auf SD-Karte kopieren
flash2minix. recovery.img in minix Speicher flashen mit flash2minix.sh

packen $WORKDIR für Backup in Datei minix.tar.bz2 packen
auspacken .. Backup minix.tar.bz2 in den Ordner $WORKDIR auspacken
adb Android-SDK installieren

http://www.myria.de/computer/864-linux-auf-dem-minix-x5

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

help diese Hilfe anzeigen

Die Reihenfolge der wesentlichen Befehle, um ein Linux-basiertes Minix Neo X5-System aufzusetzen.

Position Befehl Beschreibung

1 prepare Es werden die ggf. fehlenden Pakete nachinstalliert, damit die nachfolgenden
Befehle ausgeführt werden können.

2 bootstrap Es wird das rootFS gemäß der Distributionsauswahl heruntergeladen und
unter minix/minix-rootfs abgelegt

3 chrootfs

Wechseln in das neue rootFS. Dort müssen noch die beiden Skripte
install_tools.sh (Nachinstallation einiger Pakete, Mount-Points festlegen
und Netzwerkkonfiguration) und config_keyboard.sh (Tastaturlayout
festlegen; immer noch etwas buggy unter Debian).

4 kernel Die Kernel-Quellen werden heruntergeladen und der neue Minix-Neo-Kernel
wird generiert. Es wird dabei die Default-Konfiguration verwendet

Nachdem der Kernel (recovery.img) und das rootFS erstellt wurden müssen diese noch auf den Minix
gebracht werden. Das rootFS wird dazu auf eine SDCARD kopiert und Kernel wird mit dem neuen
Skript flash2minix.sh im Ordner minix/minix-kernel/rkflashtool in den recovery-
Bereich des Minix kopiert. Die Reihenfolge dieser beiden Schritte ist unabhängig, da sie auf
unterschiedliche Medien zugreifen.

Position Befehl Beschreibung

5 copy2sd

Alle Daten aus dem rootFS werden werden auf eine SDCARD, die als
/media/USERNAME/linuxroot eingebunden wurde, kopiert. WICHTIG:
Der Name linuxroot ist wichtig, da hierüber die SDCARD vom Image
gemountet wird.

6 flash2minix Das recovery.img-Image wird in den recovery-Bereich des Minix geflasht.

Abschließend gibt es noch eine Reihe administrative COMMANDS wie packen (backup), auspacken
(restore) und adb (Installation der adb-1)Tools)um die Sache abzurunden. Diese Befehle sind optional
und müssen nicht zwingend verwendet werden.

Befehl Beschreibung

packen Alle Daten aus dem Arbeitsverzeichnis werden in das Archive minix.tar.bz2 gepackt.
Inklusive des build-Skript selbst.

auspacken
Auspacken von minix.tar.bz2 in den aktuellen Ordner. Alternativ kann der Befehl
tar -xvjf minix.tar.bz2 verwendet werden. ACHTUNG: Sollte dies im
Arbeitsordner getan werden, so wird der Stand überschrieben!

adb Laden und einrichten der adb-Tools. Damit kann der minix per adb reboot recovery
veranlasst werden in gezielt den recovery-Mode zu starten.

Das eigentliche Script build_minix_x5_sys_v2_1.sh

Falls das Script über die Konsole laden werden soll, wenn z.B. kein Browser zur Hand ist, dann kann
dieser Befehl genutzt werden:

wget -O skript.sh
"http://www.kopfload.de/doku.php?do=export_code&id=allgemein:minix:minix_scr
ipt&codeblock=2"

2026/01/31 08:39 3/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Und hier nun das Script:

build_minix_x5_sys_v2.sh

#!/bin/bash
#SDCARDDIR=/media/linuxroot
SDCARDDIR=/media/$USERNAME/linuxroot
RED='\e[1;31m'
GREEN='\e[1;32m'
CYAN='\e[1;36m'
NC='\e[0m'
BOOTSTRAP=qemu-debootstrap # Datei muss vorhanden sein
QEMU=qemu-user-static # Paketname für qemu-debootstrap
BINFMT=binfmt-support # Datei muss vorhanden sein
DEBOOTSTRAP=debootstrap # Paketname für binfmt-support
GIT=git # git Client für Kernel-Sourcecode download
SHARUTILS=sharutils
LIBUSBDEV=libusb-1.0-0-dev # libusb
CROSSCOMPILER_DEB=gcc-arm-linux-gnueabihf # Paket des Crosscompilers
#CROSSCOMPILER=arm-linux-gnueabihf-gcc-4.7 # Crosscompiler für ARM-
Architektur; wird nur bei älteren Version <4.8 benötigt
BESSENTIAL=build-essential
LIBNCURSES=libncurses5-dev
ARCH=armhf
VARIANT=minbase

HOMEDIR=`pwd` # akutelles Home-Verzeichnis; Start-Pfad, in den der
Unterordner "minix" erstellt wird

WORKDIR=minix
BASEDIR=${HOMEDIR}/$WORKDIR
ROOTFSDIR=${BASEDIR}/$WORKDIR-rootfs
KERNELDIR=${BASEDIR}/$WORKDIR-kernel
ANDROIDDIR=${BASEDIR}/android/tools
ADBDIR=${BASEDIR}/android/platform-tools
KERNELNAME=rk3066-kernel

KERNELCONFIG=.config_minix_neo_x5_20131018 # Konfiguration für Kernel-
Compile

Konfiguration des Minix System
MINIXROOTUSER=root # setzen des sudo-User des minix;
MINIXHOSTNAME=minix # Systemname des minix
MINIXSSID=wlanssid # WLAN SSID des minix
MINIXPSK=wlanpass # WLAN PSK des minix
Liste mit zusätzlichen Tools, die auf dem Minix Neo installiert
werden sollen.
MINIXEXTRATOOLS="nano,openssh-server,ifupdown,netbase,net-tools,isc-
dhcp-client,keyboard-configuration,vim,sudo"

DIST_MAIN=debian # debian oder ubuntu als Zielsystem festlegen;

https://www.kopfload.de/doku.php?do=export_code&id=allgemein:minix:minix_script&codeblock=3

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

Version wird unten über UBUNTU_VERSION bzw. DEBIAN_VERSION festgelegt;
wenn LEER, dann wird der Wert erfragt
DIST_VERSION=wheezy # percise für Ubuntu 12.04 ODER wheezy für
Debian 7.0; wenn leer, dann wird der Wert erfragt

MIRROR=empty
SOURCES=empty
Parameter für Minix Neo System konfigurieren
Ubuntu 12.04 Precise Pangolin

if [-z $DIST_MAIN] || [-z $DIST_VERSION]
then
 echo -e "Betriebssystem wählen ${GREEN}ubuntu${NC} oder
${GREEN}debian${NC}; [default: ${RED}debian${NC}]"
 read -p "Wahl :" choice
 case "$choice" in
 ubuntu|UBUNTU)
 DIST_MAIN=ubuntu
 echo -e "Ubuntu-Distribution angeben; [Default:
${RED}precise${NC}]"
 read -p "Wahl :" choice
 if [$choice]
 then DIST_VERSION=${choice}
 else DIST_VERSION=precise
 fi
 ;;
 *)
 DIST_MAIN=debian
 echo -e "Debian-Distribution angeben; [Default:
${RED}wheezy${NC}]"
 read -p "Wahl :" choice
 if [$choice]
 then DIST_VERSION=${choice}
 else DIST_VERSION=wheezy
 fi
 ;;
 esac
echo "Distribution: $DIST_MAIN und $DIST_VERSION ausgewählt."
fi

MIRROR_UBUNTU=http://ports.ubuntu.com
SOURCES_UBUNTU="deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION main
restricted universe multiverse
deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION main restricted
universe multiverse
deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-updates main restricted
universe multiverse
deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-updates main
restricted universe multiverse
deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-security main restricted
universe multiverse

2026/01/31 08:39 5/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-security main
restricted universe multiverse"

Debian 7.0 Wheezy
MIRROR_DEBIAN=http://ftp.de.debian.org/debian
SOURCES_DEBIAN="deb $MIRROR_DEBIAN $DIST_VERSION main contrib non-free
deb-src $MIRROR_DEBIAN $DIST_VERSION main contrib non-free"

Variablen für Distributionsauswahl vorbereiten.
case "$DIST_MAIN" in
 debian)
 DIST=$DIST_VERSION
 MIRROR=$MIRROR_DEBIAN
 SOURCES=$SOURCES_DEBIAN
 ;;
 ubuntu)
 DIST=$DIST_VERSION
 MIRROR=$MIRROR_UBUNTU
 SOURCES=$SOURCES_UBUNTU
 ;;
esac

[$UID -ne 0] && {
 echo -e "${RED}Fehler: Das Script benötigt root-Rechte.${NC}"
 echo -e "Aufruf mit \"${GREEN}sudo 0{NC}\""
 exit 1
}

Arbeitsarchive sichern
alles_packen() {
echo -e "Packe rootfs und kernel in ${GREEN}minix.tar.bz2${NC}"
cd $HOMEDIR
cp $HOMEDIR/${0} $WORKDIR
tar -cvjf minix.tar.bz2 $WORKDIR
}

Arbeitsarchive wiederherstellen
alles_auspacken() {
echo -e "Packe ${GREEN}minix.tar.bz2${NC} aus nach
${GREEN}$WORKDIR${NC}"
if [-d $WORKDIR]
then
 echo -e "${RED}Fehler${NC}: Ordner ${RED}$WORKDIR${NC} existiert
schon!"
 read -p "Überschreiben [j|N]: " choice
 case "$choice" in
 j|J)
 rm -rf $WORKDIR;;
 *)
 echo -e "Nichts passiert. ${GREEN}OK${NC}."
 exit 1

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

 ;;
 esac
fi
echo -e "Erstelle ${RED}$WORKDIR${NC}."
mkdir $WORKDIR
tar -xvjf minix.tar.bz2
echo -e "Alles ausgepackt. ${GREEN}OK${NC}."
}

System vorbereiten
prepare() {
echo -e "-------- BEGIN Vorbereitungen (${CYAN}prepare${NC}) ---------"
if [-z $(which ${BOOTSTRAP})] || [-z $(which /usr/sbin/update-
binfmts)] || [-z $(which ${DEBOOTSTRAP})]
then
 echo -e "Installiere ${RED}${QEMU} ${BINFMT} ${DEBOOTSTRAP}${NC}."
 apt-get update
 apt-get -y install $QEMU $BINFMT $DEBOOTSTRAP
else
 echo -e "${BOOTSTRAP} ${BINFMT} und ${DEBOOTSTRAP} sind bereits
installiert. ${GREEN}OK${NC}."
fi
 # extra build tools

if [-z $(which ${GIT})] || [-z $(which arm-linux-gnueabihf-gcc)] ||
[! -e /usr/share/build-essential/essential-packages-list] || [-z
$(which uudecode)] || [! -d /usr/include/libusb-1.0]
then
 echo -e "Installiere ${RED}${GIT}, ${CROSSCOMPILER_DEB},
${SHARUTILS}, ${LIBUSBDEV} und ${BESSENTIAL}${NC}."
 apt-get update
 apt-get -y install $GIT $CROSSCOMPILER_DEB $SHARUTILS $LIBUSBDEV
$BESSENTIAL
gcc wird als arm-linux-gnueabihf-gcc-4.7 installiert, make erwartet
aber arm-linux-gnueabihf-gcc
LÖSUNG: sym-link anlegen
ln -s $(dirname `which $CROSSCOMPILER`)/$CROSSCOMPILER /usr/bin/arm-
linux-gnueabihf-gcc
else
 echo -e "${GIT}, ${CROSSCOMPILER}, ${SHARUTILS}, ${LIBUSBDEV} und
${BESSENTIAL} sind bereits installiert. ${GREEN}OK${NC}."
fi

#ncurses für make menuconfig
if [! -e /usr/include/curses.h]
then
 echo -e "Installiere ${RED}${LIBNCURSES}${NC}."
 apt-get -y install $LIBNCURSES
else
 echo -e "${LIBNCURSES} ist bereits installiert. ${GREEN}OK${NC}."
fi

2026/01/31 08:39 7/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

if [! -d $BASEDIR]
then
 echo -e "Arbeitsverzeichnis werden erstellt. ${RED}$BASEDIR${NC}."
 mkdir $BASEDIR && mkdir $KERNELDIR && mkdir $ROOTFSDIR && mkdir
${KERNELDIR}/kernel_mod
 chown -R $SUDO_USER:$SUDO_USER $BASEDIR
else
 echo -e "Arbeitsverzeichnis existiert bereits. ${GREEN}OK${NC}."
fi
echo -e "-------- END Vorbereitungen (${CYAN}prepare${NC}) ---------"
}

rootFS anlegen
bootstrap() {
echo -e "-------- BEGIN RootFS erzeugen (${CYAN}bootstrap${NC}) -------
--"
echo -e "${RED}Boootstrap anlegen.${NC}"
cd $ROOTFSDIR
pwd
$BOOTSTRAP --verbose --no-check-gpg --variant=$VARIANT --
include=$MINIXEXTRATOOLS --arch=$ARCH $DIST $ROOTFSDIR $MIRROR
echo -e "-------- END RootFS erzeugen (${CYAN}bootstrap${NC}) ---------
"
}

Neuen recovery.img Kernel bauen
kernel() {
echo -e "-------- BEGIN recovery.img Kernel erzeugen
(${CYAN}kernel${NC})---------"
echo -e "Kernel ${RED}herunterladen/bauen${NC}"
cd $KERNELDIR

#Kernel sourcen schon vorhanden? Sonst herunterladen
if [! -d rk3066-kernel]
then
 echo -e "Hole ${RED}rk3066-kernel${NC}!"
 git clone --depth 1 https://github.com/Myria-de/rk3066-kernel-minix-
neo-x5 rk3066-kernel
else
 echo -e "rk3066-kernel ist bereits vorhanden. ${GREEN}OK${NC}."
fi

#initramfs
if [! -d initramfs]
then
 echo -e "Hole ${RED}initramfs${NC}!"
 git clone --depth 1
https://github.com/Galland/rk30_linux_initramfs.git initramfs

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

 cd initramfs
 gzip -dc debian-3.0.8+fkubi.cpio.gz > initramfs.cpio
else
 echo -e "initramfs ist bereits vorhanden. ${GREEN}OK${NC}."
fi

kernel schon vorhanden?
BUILDKERNEL=yes
if [-e ${KERNELDIR}/${KERNELNAME}/arch/arm/boot/zImage]
then
 read -p "Kernel-Image existiert bereits. Neu erstellen (j/N)?" choice
 case "$choice" in
 j|J) BUILDKERNEL=yes;;
 *) BUILDKERNEL=no;;
 esac
fi

#kernel erstellen
if [${BUILDKERNEL} == yes]
then
 echo -e "Baue ${RED}kernel${NC}!"
 cd ${KERNELDIR}/${KERNELNAME}
Compiler Parameter setzen
 export ARCH=arm
 export CROSS_COMPILE=arm-linux-gnueabihf-
 export INSTALL_MOD_PATH=${KERNELDIR}/kernel_mod
 export KDIR=./
 export LOCALVERSION=""
 MAKE="make -j$(getconf _NPROCESSORS_ONLN)"
 $MAKE mrproper
 cp $KERNELCONFIG .config # Default-Konfiguration für Kernel-Compile
setzen
 #cp config.pcw .config
 $MAKE
 $MAKE modules_install
else
 echo -e "Existierender kernel wird verwendet. ${GREEN}OK${NC}."
fi

mkbootimge für das Erstellen von recovery.img
if [! -d ${KERNELDIR}/tools]
then
 echo -e "Hole ${RED}mkbootimge!${NC}!"
 cd ${KERNELDIR}
 git clone --depth 1 https://github.com/olegk0/tools.git
else
 echo -e "mkbootimge ist bereits vorhanden. ${GREEN}OK${NC}."
fi

#rkflashtool zum Flashen von recovery.img
cd ${KERNELDIR}

2026/01/31 08:39 9/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

if [! -d ${KERNELDIR}/rkflashtool]
then
echo -e "Hole ${RED}rkflashtool_rk3066${NC}!"
git clone --depth 1 https://github.com/Galland/rkflashtool_rk3066.git
rkflashtool
cd ${KERNELDIR}/rkflashtool
if [-e flash_kernel.sh]
then
 rm flash_kernel.sh
 echo "flash_kernel.sh vorsichtshalber gelöscht!" # mit falschen
Parameter kann es den minix zerstören
 echo -e "statt flash_kernel.sh bitte ${GREEN}flash2minix.sh${NC}
nutzen."
fi

make
if [-e ${KERNELDIR}/rkflashtool/rkflashtool]
then
 echo -e "rkflashtool erfolgreich erstellt. ${GREEN}OK${NC}."
 else
 echo -e "${RED}Fehler konnte rkflashtool nicht erstellen!${NC}"
 fi
else
 echo -e "rkflashtool ist bereits vorhanden. ${GREEN}OK${NC}."
fi

echo -e "Erstelle ${RED}recovery.img${NC}!"
cd ${KERNELDIR}/tools
./mkbootimg --kernel ${KERNELDIR}/${KERNELNAME}/arch/arm/boot/zImage \
--ramdisk ${KERNELDIR}/initramfs/fakeramdisk.gz --base 60400000 \
--pagesize 16384 --ramdiskaddr 62000000 \
-o ${KERNELDIR}/recovery.img
cd ${KERNELDIR}
if [-e ${KERNELDIR}/recovery.img]
then
 echo -e "recovery.img erfolgreich erstellt. ${GREEN}OK${NC}."
 mv ${KERNELDIR}/recovery.img ${KERNELDIR}/rkflashtool/recovery.img
else
 echo -e "${RED}Fehler: recovery.img wurde nicht erstellt!${NC}"
fi
echo -e "-------- END recovery.img Kernel erzeugen (${CYAN}kernel${NC})
---------"
}

#copy files to SD card $SDCARDDIR /media/linuxroot
copy_files() {
echo -e "-------- BEGIN Dateien auf SD-Karte (${CYAN}copy2sd${NC}) ----
-----"
echo "Dateien auf SD-Karte kopieren"
if [-d ${SDCARDDIR}]
then

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

 echo -e "Kopiere ${RED}rootfs${NC}!"
 cp -av ${ROOTFSDIR}/* ${SDCARDDIR}
 echo -e "Kopiere ${RED}Kernel-Module${NC}"
 cp -av ${KERNELDIR}/kernel_mod/* ${SDCARDDIR}
 echo -e "Kopieren beendet. ${GREEN}OK${NC}."
else
 echo -e "${RED}Fehler: Verzeichnis ${SDCARDDIR} existiert nicht. Bitte
SD-Karte einhängen.${NC}"
fi
echo -e "-------- END Dateien auf SD-Karte (${CYAN}copy2sd${NC}) ------
---"
}

recovery.img auf minix flashen
flash_recovery() {
if [-d ${KERNELDIR}/rkflashtool]
then
cd ${KERNELDIR}/rkflashtool
#flash2minix.sh erstellen
echo -e "${RED}flash2minix.sh${NC} generieren. Wird zum flashen des
neuen Kernels verwendet."
cat<<EOF>flash2minix.sh
#!/bin/bash
Machine-Model: NEO-X5-116A
Machine-ID: 007
Manufactorer: RK30SDK
#
Partitionmap
Partition @Addr length
misc 0x2000 0x2000
kernel 0x4000 0x6000
boot 0xA000 0x8000
recovery 0x12000 0x8000
backup 0x1A000 0xC0000
cache 0xDA000 0x40000
userdata 0x11A000 0x800000
kpanic 0x91A000 0x2000
system 0x91C000 0x100000
syntax: rkflashtool w ADDR LEN < IMG_NAME.img
example: flash w 0x12000 0x8000 < recovery.img
RED='\e[1;31m'
GREEN='\e[1;32m'
NC='\e[0m'

if [-f recovery.img];
then
 echo -e "\${RED}ACHTUNG: Die Startwerte MÜSSEN korrekt sein!\${NC}"
 echo "Wenn die Adresse oder der Offset falsch ist, dann kann das
Gerät beschädigt werden!"
 echo "Lese Speicher von Minix aus!!"
 sudo ./rkflashtool r 0x0 0x1 > read.img

2026/01/31 08:39 11/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

 echo -e "Dump-Format:
\${GREEN}OFFSET@ADRESSE(NAME)\${NC}"
 echo -e "Dump des Minix-Speichers:\${RED} \c"
 cat read.img | strings | grep --color -Po
'(?<=\(boot\)\,).*(?=\(backup)' | grep -Po '^.*(?=\,)'
 echo -e "\${NC}Ermittelte Werte für den Flash-Vorgang:"
 offset=\$(cat read.img | strings | grep -Po
'(?<=\(boot\)\,).*(?=\(recovery)' | grep -o '^0x[0-9]\{8\}')
 addr=\$(cat read.img | strings | grep -Po
'(?<=\(boot\)\,).*(?=\(recovery)' | grep -o '0x[0-9]\{8\}\$')

 rm read.img
 echo "Ermittelte Werte für recovery.img:"
 echo -e "Größe Image : \${GREEN}\$offset\${NC}"
 echo -e "Start-Adresse : \${GREEN}\$addr\${NC}"
 echo -e "\${GREEN}Verwende folgenden Befehl zum Flashen:\${RED}"
 echo -e "\${RED}./rkflashtool w \$addr \$offset < recovery.img\${NC}"
 read -p "Parameter korrekt? [j|N]" choice
 case "\$choice" in
 j|J)
 echo -e "\\n\${RED}!!Gerät nicht abschalten schreibe
image!!\${NC}"
 echo -e "./rkflashtool w \$addr \$offset < recovery.img"
 sudo ./rkflashtool w \$addr \$offset < recovery.img
 ;;
 *) echo -e "Nichts passiert. \${GREEN}OK\${NC}."
 ;;
 esac
else
 echo -e "Es muss zunächst ein kernel übersetzt werden und eine
gültige \${GREEN}recovery.img\${NC} Datei existieren,"
 echo "um dieses Skript zu nutzen!"
fi
EOF
chmod +x ${KERNELDIR}/rkflashtool/flash2minix.sh
./flash2minix.sh
else
 echo -e "${RED}Fehler:${NC} rkflashtool nicht installiert!"
fi
}

in neues rootFS wechseln und letzte Änderungen vornehmen
rootfs() {
echo -e "-------- BEGIN In rootFS wechseln (${CYAN}rootfs${NC}) -------
--"
echo "Rootfs bearbeiten"

chmod 755 ${ROOTFSDIR}/install_tools.sh
chmod 755 ${ROOTFSDIR}/config_keyboard.sh

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

mount -t proc proc ${ROOTFSDIR}/proc
mount -t sysfs sysfs ${ROOTFSDIR}/sys
mount -o bind /dev ${ROOTFSDIR}/dev
mount -t devpts devpts ${ROOTFSDIR}/dev/pts
echo -e "${GREEN}Wechsele in ${ROOTFSDIR}${NC}."
echo -e "Bitte nach dem Wechsel ${RED}install_tools.sh${NC} und
${RED}config_keyboard.sh${NC} aufrufen."
echo -e "Mit ${RED}exit${NC} kann ins Hauptsystem zurückgewechselt
werden."
chroot ${ROOTFSDIR}
mountpoints wieder entfernen
umount ${ROOTFSDIR}/proc
umount ${ROOTFSDIR}/sys
umount ${ROOTFSDIR}/dev/pts
umount ${ROOTFSDIR}/dev
echo -e "Willkommen zurück im ${RED}Hauptsystem${NC}."
echo -e "-------- END rootFS vorbereiten (${CYAN}rootfs${NC}) ---------
"
}

rootFS Grundkonfiguration vornehmen
prepare_rootfs() {
echo -e "-------- BEGIN Vorbereitung rootFS
(${CYAN}prepare_rootfs${NC}) ---------"
echo "Bereite rootfs vor"

Paketquellen konfigurieren
echo -e "Lege Paketquellen fest für minix (${RED}$DIST_MAIN${NC} /
${RED}$DIST${NC})"
cat<<EOF>${ROOTFSDIR}/etc/apt/sources.list
$SOURCES
EOF

#Hostname setzen
echo -e "Hostname für minix in ${RED}/etc/hostname${NC} auf
${RED}$MINIXHOSTNAME${NC} setzen."
echo ${MINIXHOSTNAME} > ${ROOTFSDIR}/etc/hostname
echo "127.0.1.1 ${MINIXHOSTNAME}" >> ${ROOTFSDIR}/etc/hosts

#fstab
echo -e "Mountpoints für minix in ${RED}/etc/fstab${NC} setzen."
cat<<EOF>${ROOTFSDIR}/etc/fstab
/dev/root / ext4 defaults,noatime 0 0
tmpfs /var/log tmpfs defaults 0 0
tmpfs /tmp tmpfs defaults 0 0
tmpfs /var/tmp tmpfs defaults 0 0
EOF

#Netzwerk setup
echo -e "Netzwerk für minix ${RED}/etc/network/interfaces${NC} setzen."
cat<<EOF>${ROOTFSDIR}/etc/network/interfaces

2026/01/31 08:39 13/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

auto lo
iface lo inet loopback
Ethernet interface eth0
auto eth0
iface eth0 inet dhcp

WLAN interface eth1
#auto eth1
#iface eth1 inet dhcp
#wpa-ssid $MINIXSSID
#wpa-psk $MINIXPSK
EOF

echo -e "Nameserver aus Hauptsystem ${RED}/etc/resolve.conf${NC} für
minix setzen."
cp -L /etc/resolv.conf ${ROOTFSDIR}/etc/resolv.conf

Installationsskript install_tools.sh und in rootFS ablegen. Muss nach
chroot aufgerufen werden!
echo -e "Installtionsskript ${RED}install_tools.sh${NC} anlegen. MUSS
NACH ${RED}chroot${NC} aufgerufen werden!"
cat<<EOF>${ROOTFSDIR}/install_tools.sh
PURP='\e[1;35m'
CYAN='\e[1;36m'
NC='\e[0m'
echo -e "Installiere Tools im \${PURP}rootfs\${NC}."
export LANG=C
apt-get update
apt-get -y install apt-utils dialog locales
cat <<END > /etc/apt/apt.conf.d/71neo
APT::Install-Recommends "0";
APT::Install-Suggests "0";
END
Sprache auf deutsch wechseln
cat <<END > /etc/locale.gen
de_DE.UTF-8 UTF-8
END
export LANG=de_DE.UTF-8
locale-gen de_DE.UTF-8
dpkg-reconfigure locales
localedef -i de_DE -c -f UTF-8 de_DE.UTF-8

Fallunterscheidung, weil firmware-Paket bei Ubuntu anders heisst als
bei Debian
if grep -iq "ubuntu" /etc/issue
then
 apt-get -y install sudo udev iproute iputils-ping wget ntpdate ntp
vim less most tzdata console-tools console-data console-common module-
init-tools linux-firmware
else
 apt-get -y install sudo udev iproute iputils-ping wget ntpdate ntp

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

vim less most tzdata console-tools console-data console-common module-
init-tools firmware-linux-free firmware-linux-nonfree
fi

echo -e "Bitte geben Sie das \${PURP}Passwort\${NC} und die
\${PURP}Daten\${NC} für den \${PURP}neuen root-Benutzer\${NC} ein."
adduser $MINIXROOTUSER
adduser $MINIXROOTUSER sudo
EOF

Installationsskript config_keyboard.sh und in rootFS ablegen. Muss
nach chroot aufgerufen werden!
echo -e "Installtionsskript ${RED}config_keyboard.sh${NC} anlegen. MUSS
NACH ${RED}chroot${NC} aufgerufen werden!"
cat<<EOF>${ROOTFSDIR}/config_keyboard.sh
dpkg-reconfigure tzdata
dpkg-reconfigure console-data
dpkg-reconfigure console-common
dpkg-reconfigure keyboard-configuration
EOF

echo -e "-------- END Vorbereitung rootFS (${CYAN}prepare_rootfs${NC})
---------"
}

hilfe() {
cat <<EOF
Aufruf: sudo $0 OPTION

Optionen:
prepare System vorbereiten, nötige Pakete installieren
bootstrap .. System vorbereiten (prepare) und Dateien für rootfs
herunterladen (bootstrap)
kernel Kernel herunterladen und compilieren
chrootfs ... mit chroot in das rootfs wechseln und das minix-system
vorkonfigurieren
mksystem ... führt prepare, bootstrap, chrootfs und kernel nacheinander
aus

copy2sd System auf SD-Karte kopieren
flash2minix. recovery.img in minix Speicher flashen
packen $WORKDIR für Backup in Datei minix.tar.bz2 packen
auspacken .. Backup minix.tar.bz2 in den Ordner $WORKDIR auspacken
adb Android-SDK installieren

help diese Hilfe anzeigen

Beispiel für mksystem:
EOF
echo -e "${RED}sudo $0 mksystem${NC}"
}

2026/01/31 08:39 15/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Android Tools installieren, zu Fernsteuerung des Minix Neo per Linux-
Terminal
install_adb() {
apt-get --no-install-recommends install openjdk-7-jre
if !(uname -m | grep -i 32)
then
 echo -e "Aktuelles System ist kein 32-bit-System. Android-Umgebung
benötigt ia32-libs. Wird installiert."
 apt-get install ia32-libs
fi
cd $BASEDIR
wget -c http://dl.google.com/android/android-sdk_r22.3-linux.tgz
tar zxvf android-sdk_r22.3-linux.tgz
mv android-sdk-linux $BASEDIR/android
chown -R $SUDO_USER:$SUDO_USER $BASEDIR/android

if [! -d ${HOMEDIR}/.android]
then
 mkdir ${HOMEDIR}/.android
 chown -R $SUDO_USER:$SUDO_USER ${HOMEDIR}/.android
fi

if [! -e ${HOMEDIR}/.android/adb_usb.ini]
then
cat<<EOF>${HOMEDIR}/.android/adb_usb.ini
ANDROID 3RD PARTY USB VENDOR ID LIST -- DO NOT EDIT.
USE 'android update adb' TO GENERATE.
1 USB VENDOR ID PER LINE.
0x2207
EOF
 chown $SUDO_USER:$SUDO_USER ${HOMEDIR}/.android/adb_usb.ini
fi

if [! -e /etc/udev/rules.d/51-android.rules]
then
cat<<EOF>/etc/udev/rules.d/51-android.rules
SUBSYSTEM=="usb", ATTR{idVendor}=="2207", MODE="0666"
EOF
 chown root:root /etc/udev/rules.d/51-android.rules
 chmod 644 /etc/udev/rules.d/51-android.rules
 sudo service udev restart
fi

cd ${ANDROIDDIR}
echo -e "Es werden noch die ADB-Tools benötigt. ${GREEN}Bitte die
Lizenzen akzeptieren, damit der Download startet.${NC}"
su $SUDO_USER ./android update sdk --no-ui
}

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

case "$1" in
 prepare)
 prepare
 ;;
 bootstrap)
 prepare
 bootstrap
 ;;
 kernel)
 prepare
 kernel
 ;;
 copy2sd)
 copy_files
 ;;
 flash2minix)
 flash_recovery
 ;;
 packen)
 alles_packen
 ;;
 auspacken)
 alles_auspacken
 ;;
 adb)
 install_adb
 ;;
 chrootfs)
 prepare_rootfs
 rootfs
 ;;
 mksystem)
 prepare
 bootstrap
 prepare_rootfs
 rootfs
 kernel
 ;;
 hilfe)
 hilfe
 ;;
 *)
 hilfe
 ;;
esac
exit 0

2026/01/31 08:39 17/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Das Flash-Script flash2minix.sh

Falls jemand nur das flash2minix.sh Script genötigt, hier eine direkt lauffähige Version.
ACHTUNG: Das Script muss im Ordner HOMEDIR/minix/minix-kernel/rkflashtool liegen und
rkflashtool muss existieren, damit alle Dateien gefunden werden und das Script läuft.

flash2minix.sh

#!/bin/bash
flash2minix.sh is a script for flashing a recovery.img to a Minix NEO
X5 Mediaplayer
No warranty for damages, use at your own risk
Diese Script kann recovery.img Dateien auf einen Minix NEO X5
Mediaplayer flashen.
Ich übernehme keine Verantwortung für Schäden am Gerät. Benutzung auf
eigene Gefahr!
Machine-Model: NEO-X5-116A
Machine-ID: 007
Manufactorer: RK30SDK
#
Partitionmap
Partition @Addr length
misc 0x2000 0x2000
kernel 0x4000 0x6000
boot 0xA000 0x8000
recovery 0x12000 0x8000
backup 0x1A000 0xC0000
cache 0xDA000 0x40000
userdata 0x11A000 0x800000
kpanic 0x91A000 0x2000
system 0x91C000 0x100000
syntax: rkflashtool w ADDR LEN < IMG_NAME.img
example: flash w 0x12000 0x8000 < recovery.img
RED='\e[1;31m'
GREEN='\e[1;32m'
NC='\e[0m'

if [-f recovery.img];
then
 echo -e "${RED}ACHTUNG: Die Startwerte MÜSSEN korrekt sein!${NC}"
 echo "Wenn die Adresse oder der Offset falsch ist, dann kann das
Gerät beschädigt werden!"
 echo "Lese Speicher von Minix aus!!"
 sudo ./rkflashtool r 0x0 0x1 > read.img
 echo -e "Dump-Format: ${GREEN}OFFSET@ADRESSE(NAME)${NC}"
 echo -e "Dump des Minix-Speichers:${RED} \c"
 cat read.img | strings | grep --color -Po
'(?<=\(boot\)\,).*(?=\(backup)' | grep -Po '^.*(?=\,)'
 echo -e "${NC}Ermittelte Werte für den Flash-Vorgang:"
 offset=$(cat read.img | strings | grep -Po

https://www.kopfload.de/doku.php?do=export_code&id=allgemein:minix:minix_script&codeblock=4

Last update: 2025/11/19 16:39 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

https://www.kopfload.de/ Printed on 2026/01/31 08:39

'(?<=\(boot\)\,).*(?=\(recovery)' | grep -o '^0x[0-9]\{8\}')
 addr=$(cat read.img | strings | grep -Po
'(?<=\(boot\)\,).*(?=\(recovery)' | grep -o '0x[0-9]\{8\}$')

 rm read.img
 echo "Ermittelte Werte für recovery.img:"
 echo -e "Größe Image : ${GREEN}$offset${NC}"
 echo -e "Start-Adresse : ${GREEN}$addr${NC}"
 echo -e "${GREEN}Verwende folgenden Befehl zum Flashen:${RED}"
 echo -e "${RED}./rkflashtool w $addr $offset < recovery.img${NC}"
 read -p "Parameter korrekt? [j|N]" choice
 case "$choice" in
 j|J)
 echo -e "\n${RED}!!Gerät nicht abschalten schreibe image!!${NC}"
 echo -e "./rkflashtool w $addr $offset < recovery.img"
 sudo ./rkflashtool w $addr $offset < recovery.img
 ;;
 *) echo -e "Nichts passiert. ${GREEN}OK${NC}."
 ;;
 esac
else
 echo -e "Es muss zunächst ein kernel übersetzt werden und eine
gültige ${GREEN}recovery.img${NC} Datei existieren,"
 echo "um dieses Skript zu nutzen!"
fi

Change-Notes build_minix_x5_sys_v2_1.sh

Android SDK wird jetzt ohne GUI automatisch aktualisiert. su $SUDO_USER ./android
update sdk –no-ui
Falls die Basismaschine ein 64-Bit Linux hat, wird für die Android-Unterstützung noch das
ia32-libs Paket benötigt. Dies wird jetzt geprüft und ggf. automatisch nachgeladen. S. auch
den neuen Abschnitt zu adb.
Korrektur: Der Hostname wurde in /etc/host statt /etc/hosts gesetzt.
WLAN-Konfig muss manuell durchgeführt werden. Falls keine korrekten Daten im Script stehen,
bleibt sonst der Minix beim Booten hängen. Der folgende Bereich wurde in
/etc/network/interfaces auskommentiert.

WLAN interface eth1
#auto eth1
#iface eth1 inet dhcp
#wpa-ssid $MINIXSSID
#wpa-psk $MINIXPSK

Change-Notes build_minix_x5_sys_v2.sh

auspacken ist neu. Es packt das zuvor mit packen eingepackte Arbeitsverzeichnis wieder aus.

2026/01/31 08:39 19/19 Minix Neo X5 build_mini_x5_sys_v2.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Debian 7 / wheezy als Distribution auswählbar. Default: DIST_MAIN=debian und
DIST_VERSION=wheezy, sind die beiden Variablen nicht gesetzt, dann wird die Distribution
abgefragt.
diverse farblich hinterlegte Statusmeldungen.
Einführung zusätzlicher Konstanten, zu leichteren Anpassbarkeit
Das build-Skript wird mit eingepackt. (vgl. COMMAND=packen)
flash_kernel.sh wird gelöscht, da es das Gerät zerstören könnte. Stattdessen wird das
Skript flash2minix.sh erzeugt.

1)

Android Debug Bridge

From:
https://www.kopfload.de/ - kopfload - Lad Dein Hirn auf!

Permanent link:
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

Last update: 2025/11/19 16:39

https://www.kopfload.de/
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script

	Minix Neo X5 build_mini_x5_sys_v2.sh
	Movitation
	Bedienungsanleitung
	Das eigentliche Script build_minix_x5_sys_v2_1.sh
	Das Flash-Script flash2minix.sh
	Change-Notes build_minix_x5_sys_v2_1.sh
	Change-Notes build_minix_x5_sys_v2.sh

