2026/02/11 22:53 1/19 Minix Neo X5 build_mini_x5_sys_v2.sh

Minix Neo X5 build mini_x5 sys v2.sh

Es wird keine Haftung fiir Schaden, die durch hier veréffentlichte Programme verursacht
werden, ubernommen. Nutzung auf eigene Gefahr!

Das folgende Skript basiert auf verschiedenen Quellen. Besonders hervorzuheben ist die Seite
myria.de. Diese Seite legt die Basis fur diese Arbeit. Nochmals vielen Dank an dieser Stelle!! Da auch
ich nicht davon ausgehen kann keine Fehler mehr im Code zu haben, bitte im mir eine kurze
Nachricht zu kommen zu lassen. Dazu kann das Erganzungen-Formular am Ende der Seite
verwendet werden.

Movitation

Die Basis erzeugte einige Fehler und mich storte, dass das Flash-Tool rkflashtool mit einem Skript
ausgeliefert wird, dass die Hardware potentiell fehlerhaft beschreiben konnte (s. change notes).
Weiterhin wollte ich statt Ubuntu 12.04 LTS (Precise Pangolin) die aktuelle Debian 7 (Wheezy)
Distribution nutzen.

Bedienungsanleitung

Im wesentlich funktioniert das Skript auf der myria-Seite beschrieben. Damit es nicht mit dem Original
verwechselt wird habe ich es build_minix_x5_sys_v2.sh genannt.
Das Skript muss mit root-Rechten aufgerufen werden:

build minix x5 sys v2.sh [COMMAND]

Als COMMAND kénnen folgende Parameter genutzt werden.

Als Hilfe wird folgender Text angezeigt:

Optionen:

prepare System vorbereiten, nO0tige Pakete installieren

bootstrap .. System vorbereiten (prepare) und Dateien fur rootfs
herunterladen (bootstrap)

kernel Kernel herunterladen und compilieren

chrootfs ... mit chroot in das rootfs wechseln und das minix-system
vorkonfigurieren

mksystem ... fihrt prepare, bootstrap, chrootfs und kernel nacheinander aus
copy2sd System auf SD-Karte kopieren

flash2minix. recovery.img in minix Speicher flashen mit flash2minix.sh

packen $WORKDIR fur Backup in Datei minix.tar.bz2 packen
auspacken .. Backup minix.tar.bz2 in den Ordner $WORKDIR auspacken
adb Android-SDK installieren

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

http://www.myria.de/computer/864-linux-auf-dem-minix-x5

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

help diese Hilfe anzeigen

Die Reihenfolge der wesentlichen Befehle, um ein Linux-basiertes Minix Neo X5-System aufzusetzen.

Position Befehl Beschreibung

Es werden die ggf. fehlenden Pakete nachinstalliert, damit die nachfolgenden
Befehle ausgeflhrt werden kdnnen.

Es wird das rootFS gemaR der Distributionsauswahl heruntergeladen und
unter minix/minix-rootfs abgelegt

Wechseln in das neue rootFS. Dort missen noch die beiden Skripte
install tools.sh (Nachinstallation einiger Pakete, Mount-Points festlegen

1 prepare

2 bootstrap

3 chrootfs und Netzwerkkonfiguration) und config keyboard.sh (Tastaturlayout
festlegen; immer noch etwas buggy unter Debian).
4 kernel Die Kernel-Quellen werden heruntergeladen und der neue Minix-Neo-Kernel

wird generiert. Es wird dabei die Default-Konfiguration verwendet

Nachdem der Kernel (recovery.img) und das rootFS erstellt wurden mussen diese noch auf den Minix
gebracht werden. Das rootFS wird dazu auf eine SDCARD kopiert und Kernel wird mit dem neuen
Skript flash2minix.sh im Ordner minix/minix-kernel/rkflashtool in den recovery-
Bereich des Minix kopiert. Die Reihenfolge dieser beiden Schritte ist unabhangig, da sie auf
unterschiedliche Medien zugreifen.

Position Befehl Beschreibung

Alle Daten aus dem rootFS werden werden auf eine SDCARD, die als
/media/USERNAME/linuxroot eingebunden wurde, kopiert. WICHTIG:

> copy2sd Der Name linuxroot ist wichtig, da hierlber die SDCARD vom Image
gemountet wird.
6 flash2minix|Das recovery.img-Image wird in den recovery-Bereich des Minix geflasht.

Abschliefend gibt es noch eine Reihe administrative COMMANDS wie packen (backup), auspacken
(restore) und adb (Installation der adb-"Tools)um die Sache abzurunden. Diese Befehle sind optional
und mussen nicht zwingend verwendet werden.

Befehl Beschreibung

Alle Daten aus dem Arbeitsverzeichnis werden in das Archive minix.tar.bz2 gepackt.
Inklusive des build-Skript selbst.

Auspacken von minix.tar.bz2 in den aktuellen Ordner. Alternativ kann der Befehl
auspacken|tar -xvjf minix.tar.bz2 verwendet werden. ACHTUNG: Sollte dies im
Arbeitsordner getan werden, so wird der Stand Uberschrieben!

adb Laden und einrichten der adb-Tools. Damit kann der minix per adb reboot recovery
veranlasst werden in gezielt den recovery-Mode zu starten.

packen

Das eigentliche Script build_minix x5 sys v2 1.sh

Falls das Script Uber die Konsole laden werden soll, wenn z.B. kein Browser zur Hand ist, dann kann
dieser Befehl genutzt werden:

wget -0 skript.sh
"http://www.kopfload.de/doku.php?do=export code&id=allgemein:minix:minix scr
ipt&codeblock=2"

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 3/19 Minix Neo X5 build_mini_x5_sys_v2.sh

Und hier nun das Script:

build_minix_x5 sys v2.sh

#!/bin/bash
#SDCARDDIR=/media/linuxroot
SDCARDDIR=/media/$USERNAME/1linuxroot
RED="'\e[1;31m'

GREEN='\e[1;32m'

CYAN='\e[1;36m'

NC="'\e[Om'

BOOTSTRAP=gemu-debootstrap # Datei muss vorhanden sein
QEMU=gemu-user-static # Paketname fur qemu-debootstrap
BINFMT=binfmt-support # Datei muss vorhanden sein
DEBOOTSTRAP=debootstrap # Paketname fir binfmt-support
GIT=git # git Client fiur Kernel-Sourcecode download

SHARUTILS=sharutils

LIBUSBDEV=1ibusb-1.0-0-dev # libusb

CROSSCOMPILER DEB=gcc-arm-linux-gnueabihf # Paket des Crosscompilers
#CROSSCOMPILER=arm-linux-gnueabihf-gcc-4.7 # Crosscompiler flr ARM-
Architektur; wird nur bei alteren Version <4.8 benétigt
BESSENTIAL=build-essential

LIBNCURSES=1libncurses5-dev

ARCH=armhf

VARIANT=minbase

HOMEDIR= pwd # akutelles Home-Verzeichnis; Start-Pfad, in den der
Unterordner "minix" erstellt wird

WORKDIR=minix

BASEDIR=${HOMEDIR} /$WORKDIR
ROOTFSDIR=${BASEDIR}/$WORKDIR-rootfs
KERNELDIR=${BASEDIR}/$WORKDIR-kernel
KERNELNAME=rk3066 - kernel

KERNELCONFIG=.config minix neo x5 20131018 # Konfiguration fiur Kernel-
Compile

Konfiguration des Minix System

MINIXROOTUSER=root # setzen des sudo-User des minix;
MINIXHOSTNAME=minix # Systemname des minix

MINIXSSID=wlanssid # WLAN SSID des minix

MINIXPSK=wlanpass # WLAN PSK des minix

Liste mit zusatzlichen Tools, die auf dem Minix Neo installiert
werden sollen.
MINIXEXTRATOOLS="nano,openssh-server,ifupdown,netbase,net-tools,isc-
dhcp-client, keyboard-configuration,vim,sudo"

DIST MAIN=debian # debian oder ubuntu als Zielsystem festlegen;
Version wird unten iber UBUNTU VERSION bzw. DEBIAN VERSION festgelegt;
wenn LEER, dann wird der Wert erfragt

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

https://www.kopfload.de/doku.php?do=export_code&id=allgemein:minix:minix_script&codeblock=3

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

DIST VERSION=wheezy # percise fur Ubuntu 12.04 ODER wheezy flur
Debian 7.0; wenn leer, dann wird der Wert erfragt

MIRROR=empty

SOURCES=empty

Parameter fir Minix Neo System konfigurieren
Ubuntu 12.04 Precise Pangolin

-z $DIST MAIN -z $DIST VERSION

echo -e "Betriebssystem wahlen ${GREEN}ubuntu${NC} oder
${GREEN}debian${NC}; [default: ${RED}debian${NC}]"
read -p "Wahl :" choice
"$choice"
ubuntu|UBUNTU
DIST MAIN=ubuntu
echo -e "Ubuntu-Distribution angeben; [Default:

${RED}precise${NC}]"
read -p "Wahl :" choice
$choice

DIST VERSION=${choice}
DIST VERSION=precise

DIST MAIN=debian
echo -e "Debian-Distribution angeben; [Default:

${RED}wheezy${NC}1"
read -p "Wahl :" choice
$choice

DIST VERSION=${choice}
DIST VERSION=wheezy

echo "Distribution: $DIST_MAIN und $DIST_VERSION ausgewahlt."

MIRROR UBUNTU=http://ports.ubuntu.com

SOURCES UBUNTU="deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION main
restricted universe multiverse

deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION main restricted
universe multiverse

deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-updates main restricted
universe multiverse

deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-updates main
restricted universe multiverse

deb $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-security main restricted
universe multiverse

deb-src $MIRROR_UBUNTU/ubuntu-ports/ $DIST_VERSION-security main

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 5/19 Minix Neo X5 build_mini_x5_sys_v2.sh

restricted universe multiverse"

Debian 7.0 Wheezy

MIRROR DEBIAN=http://ftp.de.debian.org/debian

SOURCES DEBIAN="deb $MIRROR_DEBIAN $DIST_VERSION main contrib non-free
deb-src $MIRROR_DEBIAN $DIST_VERSION main contrib non-free"

Variablen fir Distributionsauswahl vorbereiten.
"$DIST_MAIN"
debian
DIST=$DIST VERSION
MIRROR=$MIRROR DEBIAN
SOURCES=$SOURCES DEBIAN

ubuntu

DIST=$DIST VERSION
MIRROR=$MIRROR UBUNTU
SOURCES=$SOURCES UBUNTU

$UID -ne 0
echo -e "${RED}Fehler: Das Script bendotigt root-Rechte.${NC}"
echo -e "Aufruf mit \"${GREEN}sudo 0{NC}\""
exit 1

Arbeitsarchive sichern

alles packen

echo -e "Packe rootfs und kernel in ${GREEN}minix.tar.bz2${NC}"
cd $HOMEDIR

cp $HOMEDIR/${0} $WORKDIR

tar -cvjf minix.tar.bz2 $WORKDIR

Arbeitsarchive wiederherstellen
alles auspacken
echo -e "Packe ${GREEN}minix.tar.bz2${NC} aus nach
${GREEN}$WORKDIR${NC}"
-d $WORKDIR

echo -e "${RED}Fehler${NC}: Ordner ${RED}$WORKDIR${NC} existiert

schon!"
read -p "Uberschreiben [j|N]: " choice
"$choice"
jld

rm -rf $WORKDIR

echo -e "Nichts passiert. ${GREEN}OK${NC}."
exit 1

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

echo -e "Erstelle ${RED}$WORKDIR${NC}."
mkdir $WORKDIR

tar -xvjf minix.tar.bz2

echo -e "Alles ausgepackt. ${GREEN}OK${NC}."

System vorbereiten

prepare

echo -e "-------- BEGIN Vorbereitungen (${CYAN}prepare${NC}) --------- "
-z $(which ${BOOTSTRAP} -z $(which /usr/sbin/update-

binfmts -z $(which ${DEBOOTSTRAP}

echo -e "Installiere ${RED}${QEMU} ${BINFMT} ${DEBOOTSTRAP}${NC}."
apt-get update
apt-get -y install $QEMU $BINFMT $DEBOOTSTRAP

echo -e "${BOOTSTRAP} ${BINFMT} und ${DEBOOTSTRAP} sind bereits
installiert. ${GREEN}OK${NC}."

extra build tools

-z $(which ${GIT} -z $(which arm-linux-gnueabihf-gcc
-e /usr/share/build-essential/essential-packages-list -Z
$(which uudecode -d /usr/include/libusb-1.0

echo -e "Installiere ${RED}${GIT}, ${CROSSCOMPILER_DEB},
${SHARUTILS}, ${LIBUSBDEV} und ${BESSENTIAL}${NC}."

apt-get update

apt-get -y install $GIT $CROSSCOMPILER DEB $SHARUTILS $LIBUSBDEV
$BESSENTIAL
gcc wird als arm-linux-gnueabihf-gcc-4.7 installiert, make erwartet
aber arm-linux-gnueabihf-gcc
LOSUNG: sym-link anlegen
1n -s $(dirname ‘which $CROSSCOMPILER)/$CROSSCOMPILER /usr/bin/arm-
linux-gnueabihf-gcc

echo -e "${GIT}, ${CROSSCOMPILER}, ${SHARUTILS}, ${LIBUSBDEV} und
${BESSENTIAL} sind bereits installiert. ${GREEN}OK${NC}."

#ncurses fiur make menuconfig
-e /usr/include/curses.h

echo -e "Installiere ${RED}${LIBNCURSES}${NC}."
apt-get -y install $LIBNCURSES

echo -e "${LIBNCURSES} ist bereits installiert. ${GREEN}OK${NC}."

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 7/19 Minix Neo X5 build_mini_x5_sys_v2.sh

-d $BASEDIR

echo -e "Arbeitsverzeichnis werden erstellt. ${RED}$BASEDIR${NC}."

mkdir $BASEDIR mkdir $KERNELDIR mkdir $ROOTFSDIR mkdir
${KERNELDIR}/kernel mod

chown -R $SUDO USER:$SUDO USER $BASEDIR

echo -e "Arbeitsverzeichnis existiert bereits. ${GREEN}OK${NC}."

echo -e "-------- END Vorbereitungen (${CYAN}prepare${NC}) --------- !

rootFS anlegen
bootstrap
echo -e "-------- BEGIN RootFS erzeugen (${CYAN}bootstrap${NC}) -------

echo -e "${RED}Boootstrap anlegen.${NC}"

cd $ROOTFSDIR

pwd

$BOOTSTRAP --verbose --no-check-gpg --variant=$VARIANT --
include=$MINIXEXTRATOOLS --arch=$ARCH $DIST $ROOTFSDIR $MIRROR

echo -e "-------- END RootFS erzeugen (${CYAN}bootstrap${NC}) ---------

Neuen recovery.img Kernel bauen

kernel
echo -e "-------- BEGIN recovery.img Kernel erzeugen
(${CYAN}kernel${NC})--------- "

echo -e "Kernel ${RED}herunterladen/bauen${NC}"
cd $KERNELDIR

#Kernel sourcen schon vorhanden? Sonst herunterladen
-d rk3066-kernel

echo -e "Hole ${RED}rk3066-kernel${NC}!"
git clone --depth 1 https://github.com/Myria-de/rk3066-kernel-minix-
neo-x5 rk3066-kernel

echo -e "rk3066-kernel ist bereits vorhanden. ${GREEN}OK${NC}."
#initramfs
-d initramfs
echo -e "Hole ${RED}initramfs${NC}!'!"

git clone --depth 1
https://github.com/Galland/rk30 linux initramfs.git initramfs

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update: . . — . _
2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

cd initramfs
gzip -dc debian-3.0.8+fkubi.cpio.gz > initramfs.cpio

echo -e "initramfs ist bereits vorhanden. ${GREEN}OK${NC}."

kernel schon vorhanden?
BUILDKERNEL=yes
-e ${KERNELDIR}/${KERNELNAME}/arch/arm/boot/zImage

read -p "Kernel-Image existiert bereits. Neu erstellen (j/N)?" choice
"$choice"
j|J) BUILDKERNEL=yes
BUILDKERNEL=no

#kernel erstellen
${BUILDKERNEL} == yes

echo -e "Baue ${RED}kernel${NC}!'"
cd ${KERNELDIR}/${KERNELNAME}
Compiler Parameter setzen
export ARCH=arm
export CROSS COMPILE=arm-linux-gnueabihf-
export INSTALL MOD PATH=${KERNELDIR}/kernel mod
export KDIR=.
export LOCALVERSION=""
MAKE="make -j$(getconf _NPROCESSORS_ONLN)"
$MAKE mrproper
cp $KERNELCONFIG .config # Default-Konfiguration fur Kernel-Compile
setzen
#cp config.pcw .config
$MAKE
$MAKE modules install

echo -e "Existierender kernel wird verwendet. ${GREEN}OK${NC}."
mkbootimge fir das Erstellen von recovery.img
-d ${KERNELDIR}/tools
echo -e "Hole ${RED}mkbootimge!${NC}!"
cd ${KERNELDIR}

git clone --depth 1 https://github.com/olegk0/tools.git

echo -e "mkbootimge ist bereits vorhanden. ${GREEN}OK${NC}."

#rkflashtool zum Flashen von recovery.img

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 9/19 Minix Neo X5 build_mini_x5_sys_v2.sh

cd ${KERNELDIR}
-d ${KERNELDIR}/rkflashtool

echo -e "Hole ${RED}rkflashtool rk3066${NC}!"
git clone --depth 1 https://github.com/Galland/rkflashtool rk3066.git
rkflashtool
cd ${KERNELDIR}/rkflashtool
-e flash kernel.sh

rm flash kernel.sh

echo "flash kernel.sh vorsichtshalber geldscht!" # mit falschen
Parameter kann es den minix zerstéren

echo -e "statt flash kernel.sh bitte ${GREEN}flash2minix.sh${NC}
nutzen."

make
-e ${KERNELDIR}/rkflashtool/rkflashtool

echo -e "rkflashtool erfolgreich erstellt. ${GREEN}OK${NC}."

echo -e "${RED}Fehler konnte rkflashtool nicht erstellen!${NC}"

echo -e "rkflashtool ist bereits vorhanden. ${GREEN}OK${NC}."

echo -e "Erstelle ${RED}recovery.img${NC}!"
cd ${KERNELDIR}/tools
./mkbootimg --kernel ${KERNELDIR}/${KERNELNAME}/arch/arm/boot/zImage \
--ramdisk ${KERNELDIR}/initramfs/fakeramdisk.gz --base 60400000 \
--pagesize 16384 --ramdiskaddr 62000000 \
-0 ${KERNELDIR}/recovery.img
cd ${KERNELDIR}
-e ${KERNELDIR}/recovery.img

echo -e "recovery.img erfolgreich erstellt. ${GREEN}OK${NC}."
mv ${KERNELDIR}/recovery.img ${KERNELDIR}/rkflashtool/recovery.img

echo -e "${RED}Fehler: recovery.img wurde nicht erstellt!${NC}"

echo -e "-------- END recovery.img Kernel erzeugen (${CYAN}kernel${NC})

#copy files to SD card $SDCARDDIR /media/linuxroot
copy files
echo -e "-------- BEGIN Dateien auf SD-Karte (${CYAN}copy2sd${NC}) ----

echo "Dateien auf SD-Karte kopieren"
-d ${SDCARDDIR}

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update:
2025/11/19 16:13
then
echo -e "Kopiere ${RED}rootfs${NC}!'"
cp -av ${ROOTFSDIR}/* ${SDCARDDIR}
echo -e "Kopiere ${RED}Kernel-Module${NC}"
cp -av ${KERNELDIR}/kernel mod/* ${SDCARDDIR}
echo -e "Kopieren beendet. ${GREEN}OK${NC}."
else
echo -e "${RED}Fehler: Verzeichnis ${SDCARDDIR} existiert nicht. Bitte
SD-Karte einhangen.${NC}"
fi
echo -e "-------- END Dateien auf SD-Karte (${CYAN}copy2sd${NC}) ------

allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

recovery.img auf minix flashen

flash recovery() {

it [-d ${KERNELDIR}/rkflashtool |

then

cd ${KERNELDIR}/rkflashtool

#flash2minix.sh erstellen

echo -e "${RED}flash2minix.sh${NC} generieren. Wird zum flashen des
neuen Kernels verwendet."

cat-<EOF>flash2minix.sh

#!/bin/bash

Machine-Model: NEO-X5-116A

Machine-ID: 007

Manufactorer: RK30SDK

#

Partitionmap

Partition ©@Addr length

misc 0x2000 0x2000
kernel 0x4000 0x6000

boot OxA000 0x8000
recovery 0x12000 0x8000
backup 0x1A000 0xCOOO0O

cache OxDAOOO 0x40000
userdata Ox11A000 0x800000
kpanic 0x91A000 0x2000

system 0x91C000 0x100000

syntax: rkflashtool w ADDR LEN < IMG NAME.img

example: flash w O0x12000 0x8000 < recovery.img
RED='\e[1;31m'
GREEN='\e[1;32m'

NC='\e[Om'
it | -f recovery.img |;
then

echo -e "\${RED}ACHTUNG: Die Startwerte MUSSEN korrekt sein!\${NC}"
echo "Wenn die Adresse oder der Offset falsch ist, dann kann das
Gerat beschadigt werden!"

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 11/19 Minix Neo X5 build_mini_x5_sys_v2.sh

echo "Lese Speicher von Minix aus!!"

sudo ./rkflashtool r Ox0 0x1 read.img

echo -e "Dump-Format:
\${GREEN}OFFSET@ADRESSE (NAME)\${NC}"

echo -e "Dump des Minix-Speichers:\${RED} \c"

cat read.img strings | grep --color -Po
"(?<=\(boot\)\,).*(?=\(backup)" grep -Po '~.*¥(?=\,)"

echo -e "\${NC}Ermittelte Werte fur den Flash-Vorgang:"

offset=\$(cat read.img strings grep -Po
"(?<=\(boot\)\,).*(?=\(recovery)" grep -o '"Ox[0-9]\{8\}"'

addr=\$(cat read.img | strings | grep -Po
'(?<=\(boot\)\,).*(?=\(recovery)' | grep -0 'Ox[0-9]\{8\}\$'

rm read.img
echo "Ermittelte Werte fur recovery.img:"
echo -e "GroBe Image : \${GREEN}\$offset\${NC}"
echo -e "Start-Adresse : \${GREEN}\$addr\${NC}"
echo -e "\${GREEN}Verwende folgenden Befehl zum Flashen:\${RED}"
echo -e "\${RED}./rkflashtool w \$addr \$offset < recovery.img\${NC}"
read -p "Parameter korrekt? [j|N]" choice
"\$choice"
jld
echo -e "\\n\${RED}!!Gerat nicht abschalten schreibe
image! I\${NC}"
echo -e "./rkflashtool w \$addr \$offset < recovery.img"
sudo ./rkflashtool w \$addr \$offset recovery.img

echo -e "Nichts passiert. \${GREEN}OK\${NC}."

echo -e "Es muss zunachst ein kernel ubersetzt werden und eine
gultige \${GREEN}recovery.img\${NC} Datei existieren,"
echo "um dieses Skript zu nutzen!"

EOF
chmod +x ${KERNELDIR}/rkflashtool/flash2minix.sh
./flash2minix.sh

echo -e "${RED}Fehler:${NC} rkflashtool nicht installiert!"

1n neues rootFS wechseln und letzte Anderungen vornehmen
rootfs
echo -e "-------- BEGIN In rootFS wechseln (${CYAN}rootfs${NC}) -------

echo "Rootfs bearbeiten"

chmod 755 ${ROOTFSDIR}/install tools.sh

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update:
2025/11/19 16:13

allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

chmod 755 ${ROOTFSDIR}/config keyboard.sh

mount -t
mount -t
mount -o
mount -t

proc proc ${ROOTFSDIR}/proc

sysfs sysfs ${ROOTFSDIR}/sys

bind /dev ${ROOTFSDIR}/dev

devpts devpts ${ROOTFSDIR}/dev/pts

echo -e "${GREEN}Wechsele in ${ROOTFSDIR}${NC}."

echo -e "Bitte nach dem Wechsel ${RED}install tools.sh${NC} und
${RED}config keyboard.sh${NC} aufrufen."

echo -e "Mit ${RED}exit${NC} kann ins Hauptsystem zurickgewechselt

werden."

chroot ${ROOTFSDIR}

mountpoints wieder entfernen

umount ${ROOTFSDIR}/proc

umount ${ROOTFSDIR}/sys

umount ${ROOTFSDIR}/dev/pts

umount ${ROOTFSDIR}/dev

echo -e "Willkommen zurick im ${RED}Hauptsystem${NC}."

echo -e "

rootFS

-------- END rootFS vorbereiten (${CYAN}rootfs${NC}) ---------

Grundkonfiguration vornehmen

prepare _rootfs

echo -e "

-------- BEGIN Vorbereitung rootFS

(${CYAN}prepare _rootfs${NC}) --------- "
echo "Bereite rootfs vor"

Paketquellen konfigurieren
echo -e "Lege Paketquellen fest fur minix (${RED}$DIST_MAIN${NC} /
${RED}$DIST${NC})"

cat<<EOF
$SOURCES
EOF

${ROOTFSDIR} /etc/apt/sources.list

#Hostname setzen

echo -e "

Hostname fur minix in ${RED}/etc/hostname${NC} auf

${RED}$MINIXHOSTNAME${NC} setzen."
echo ${MINIXHOSTNAME} ${ROOTFSDIR}/etc/hostname

echo "127.0.1.1 ${MINIXHOSTNAME}" ${ROOTFSDIR}/etc/host
#fstab
echo -e "Mountpoints fir minix in ${RED}/etc/fstab${NC} setzen."

cat<<EOF

dev/root

tmpfs
tmpfs
tmpfs
EOF

${ROOTFSDIR}/etc/fstab
ext4 defaults,noatime 0O 0
var/log tmpfs defaults
tmp tmpfs defaults
var/tmp tmpfs defaults

ol o]
ol oNo]

https://www.kopfload.de/

Printed on 2026/02/11 22:53

2026/02/11 22:53 13/19 Minix Neo X5 build_mini_x5_sys_v2.sh

#Netzwerk setup

echo -e "Netzwerk fir minix ${RED}/etc/network/interfaces${NC} setzen."
cat<<EOF=${ROOTFSDIR}/etc/network/interfaces

auto lo

iface lo inet loopback

Ethernet interface eth0

auto etho

iface ethO® inet dhcp

WLAN interface ethl
auto ethl

iface ethl inet dhcp
wpa-ssid $MINIXSSID
wpa-psk $MINIXPSK
EOF

echo -e "Nameserver aus Hauptsystem ${RED}/etc/resolve.conf${NC} fir
minix setzen."
cp -L /etc/resolv.conf ${ROOTFSDIR}/etc/resolv.conf

Installationsskript install tools.sh und in rootFS ablegen. Muss nach
chroot aufgerufen werden!

echo -e "Installtionsskript ${RED}install tools.sh${NC} anlegen. MUSS
NACH ${RED}chroot${NC} aufgerufen werden!"
cat-<EOF=${ROOTFSDIR}/install tools.sh
PURP="\e[1;35m'

CYAN="'\e[1;36m'

NC='\e[Om'

echo -e "Installiere Tools im \${PURP}rootfs\${NC}."
export LANG=C

apt-get update

apt-get -y install apt-utils dialog locales

cat END etc/apt/apt.conf.d/71neo
APT::Install-Recommends "0";

APT::Install-Suggests "0";

END

Sprache auf deutsch wechseln

cat END etc/locale.gen

de DE.UTF-8 UTF-8

END

export LANG=de DE.UTF-8

locale-gen de DE.UTF-8

dpkg-reconfigure locales

localedef -i de DE -c -f UTF-8 de DE.UTF-8

Fallunterscheidung, weil firmware-Paket bei Ubuntu anders heisst als
bei Debian
grep -iq "ubuntu" /etc/issue

apt-get -y install sudo udev iproute iputils-ping wget ntpdate ntp
vim less most tzdata console-tools console-data console-common module-

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

init-tools linux-firmware
else

apt-get -y install sudo udev iproute iputils-ping wget ntpdate ntp
vim less most tzdata console-tools console-data console-common module-
init-tools firmware-linux-free firmware-linux-nonfree
fi

echo -e "Bitte geben Sie das \${PURP}Passwort\${NC} und die
\${PURP}Daten\${NC} fir den \${PURP}neuen root-Benutzer\${NC} ein."
adduser $MINIXROOTUSER

adduser $MINIXROOTUSER sudo

EOF

Installationsskript config keyboard.sh und in rootFS ablegen. Muss
nach chroot aufgerufen werden!

echo -e "Installtionsskript ${RED}config keyboard.sh${NC} anlegen. MUSS
NACH ${RED}chroot${NC} aufgerufen werden!"

cat<-<EOF>${ROOTFSDIR}/config keyboard.sh

dpkg-reconfigure tzdata

dpkg-reconfigure console-data

dpkg-reconfigure console-common

dpkg-reconfigure keyboard-configuration

EOF

echo -e "-------- END Vorbereitung rootFS (${CYAN}prepare rootfs${NC})

hilfe
cat <<EOF
Aufruf: sudo $0 OPTION

Optionen:

prepare System vorbereiten, nOtige Pakete installieren
bootstrap .. System vorbereiten (prepare) und Dateien fir rootfs
herunterladen (bootstrap)

kernel Kernel herunterladen und compilieren

chrootfs ... mit chroot in das rootfs wechseln und das minix-system
vorkonfigurieren

mksystem ... fuhrt prepare, bootstrap, chrootfs und kernel nacheinander
aus

copy2sd System auf SD-Karte kopieren

flash2minix. recovery.img in minix Speicher flashen

packen $WORKDIR fur Backup in Datei minix.tar.bz2 packen
auspacken .. Backup minix.tar.bz2 in den Ordner $WORKDIR auspacken
adb Android-SDK installieren

help diese Hilfe anzeigen

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 15/19 Minix Neo X5 build_mini_x5_sys_v2.sh

Beispiel fur mksystem:
EOF
echo -e "${RED}sudo $0 mksystem${NC}"

Android Tools installieren, zu Fernsteuerung des Minix Neo per Linux-
Terminal

install adb

apt-get --no-install-recommends install openjdk-7-jre

cd $BASEDIR

wget -c http://dl.google.com/android/android-sdk r22.3-linux.tgz

tar zxvf android-sdk r22.3-1linux.tgz

mv android-sdk-linux $BASEDIR/android

chown -R $SUDO USER:$SUDO USER $BASEDIR/android

-d ${HOMEDIR}/.android

mkdir ${HOMEDIR}/.android
chown -R $SUDO USER:$SUDO USER ${HOMEDIR}/.android

-e ${HOMEDIR}/.android/adb usb.ini

cat-<EOF=${HOMEDIR}/.android/adb usb.ini
ANDROID 3RD PARTY USB VENDOR ID LIST -- DO NOT EDIT.
USE 'android update adb' TO GENERATE.
1 USB VENDOR ID PER LINE.
0x2207
EOF
chown $SUDO USER:$SUDO USER ${HOMEDIR}/.android/adb usb.ini

-e /etc/udev/rules.d/51-android.rules

cat-<EOF>/etc/udev/rules.d/51-android.rules
SUBSYSTEM=="usb", ATTR{idVendor}=="2207", MODE="0666"
EOF

chown root:root /etc/udev/rules.d/51-android.rules

chmod 644 /etc/udev/rules.d/51-android.rules

sudo service udev restart

cd ${BASEDIR}/android/tools
su $SUDO USER ./android update sdk --no-ui

II$1II
prepare
prepare

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

bootstrap
prepare
bootstrap

kernel
prepare
kernel

copy2sd
copy files

flash2minix
flash recovery

packen
alles packen

auspacken
alles auspacken

adb
install adb

chrootfs
prepare_rootfs
rootfs

mksystem
prepare
bootstrap
prepare rootfs
rootfs

kernel

hilfe
hilfe

hilfe

exit

Das Flash-Script flash2minix.sh

Falls jemand nur das flash2minix. sh Script gendtigt, hier eine direkt lauffahige Version.
ACHTUNG: Das Script muss im Ordner HOMEDIR/minix/minix-kernel/rkflashtool liegen und

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 17/19 Minix Neo X5 build_mini_x5_sys_v2.sh

rkflashtool muss existieren, damit alle Dateien gefunden werden und das Script lauft.

flash2minix.sh

#!/bin/bash

flashZ2minix.sh is a script for flashing a recovery.img to a Minix NEO
X5 Mediaplayer

No warranty for damages, use at your own risk

Diese Script kann recovery.img Dateien auf einen Minix NEO X5
Mediaplayer flashen.

Ich ubernehme keine Verantwortung flur Schaden am Gerat. Benutzung auf
eigene Gefahr!

Machine-Model: NEO-X5-116A

Machine-ID: 007

Manufactorer: RK30SDK

#

Partitionmap

Partition @Addr length

misc 0x2000 0x2000
kernel 0x4000 0x6000

boot OXxA000 0x8000
recovery 0x12000 0x8000
backup 0x1A000 0xCOOO0O

cache OxDAOOO 0x40000
userdata Ox11A000 0x800000
kpanic 0x91A000 0x2000

system 0x91C000 0x100000

syntax: rkflashtool w ADDR LEN < IMG NAME.img

example: flash w 0x12000 0x8000 < recovery.img
RED="'\e[1;31m'
GREEN='\e[1;32m'

NC="\e[Om'
if -f recovery.img |;
then

echo -e "${RED}ACHTUNG: Die Startwerte MUSSEN korrekt sein!${NC}"

echo "Wenn die Adresse oder der Offset falsch ist, dann kann das
Gerat beschadigt werden!”

echo "Lese Speicher von Minix aus!!"

sudo ./rkflashtool r 0x0 Ox1 read.img

echo -e "Dump-Format: ${GREEN}OFFSET@ADRESSE (NAME) ${NC}"

echo -e "Dump des Minix-Speichers:${RED} \c"

cat read.img | strings | grep --color -Po
'(?<=\(boot\)\,).*(?=\(backup)' | grep -Po '~.*(?=\,)"

echo -e "${NC}Ermittelte Werte fir den Flash-Vorgang:"

offset=$(cat read.img strings grep -Po
"(?<=\(boot\)\,).*(?=\(recovery)" grep -o '"Ox[0-9]\{8\}'

addr=$(cat read.img strings | grep -Po
"(?<=\(boot\)\,).*(?=\(recovery)" grep -o 'Ox[0-9]\{8\}$'

rm read.img

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

https://www.kopfload.de/doku.php?do=export_code&id=allgemein:minix:minix_script&codeblock=4

Last update:

2025/11/19 16:13 allgemein:minix:minix_script https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

echo "Ermittelte Werte fir recovery.img:"
echo -e "GroBe Image : ${GREEN}$offset${NC}"
echo -e "Start-Adresse : ${GREEN}$addr${NC}"
echo -e "${GREEN}Verwende folgenden Befehl zum Flashen:${RED}"
echo -e "${RED}./rkflashtool w $addr $offset < recovery.img${NC}"
read -p "Parameter korrekt? [j|N]" choice
"$choice"
jld
echo -e "\n${RED}!!Gerat nicht abschalten schreibe image!!${NC}"
echo -e "./rkflashtool w $addr $offset < recovery.img"
sudo ./rkflashtool w $addr $offset recovery.img

echo -e "Nichts passiert. ${GREEN}OK${NC}."

echo -e "Es muss zunachst ein kernel ubersetzt werden und eine
gultige ${GREEN}recovery.img${NC} Datei existieren,"
echo "um dieses Skript zu nutzen!"

Change-Notes build_minix x5 sys v2 1.sh

e Android SDK wird jetzt ohne GUI automatisch aktualisiert. su $SUDO USER ./android
update sdk —no-ui

Change-Notes build_minix x5 sys v2.sh

e auspacken ist neu. Es packt das zuvor mit packen eingepackte Arbeitsverzeichnis wieder aus.

e Debian 7 / wheezy als Distribution auswahlbar. Default: DIST MAIN=debian und
DIST VERSION=wheezy, sind die beiden Variablen nicht gesetzt, dann wird die Distribution
abgefragt

e diverse farblich hinterlegte Statusmeldungen.

e Einflhrung zusatzlicher Konstanten, zu leichteren Anpassbarkeit

e Das build-Skript wird mit eingepackt. (vgl. COMMAND=packen)

e flash _kernel.sh wird geloscht, da es das Gerat zerstoren konnte. Stattdessen wird das
Skript flash2minix. sh erzeugt.

1)

Android Debug Bridge

https://www.kopfload.de/ Printed on 2026/02/11 22:53

2026/02/11 22:53 19/19 Minix Neo X5 build_mini_x5_sys_v2.sh

From:
https://www.kopfload.de/ - kopfload - Lad Dein Hirn auf!

Permanent link:
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev= .
1408718851

Last update: 2025/11/19 16:13

kopfload - Lad Dein Hirn auf! - https://www.kopfload.de/

https://www.kopfload.de/
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851
https://www.kopfload.de/doku.php?id=allgemein:minix:minix_script&rev=1408718851

	Minix Neo X5 build_mini_x5_sys_v2.sh
	Movitation
	Bedienungsanleitung
	Das eigentliche Script build_minix_x5_sys_v2_1.sh
	Das Flash-Script flash2minix.sh
	Change-Notes build_minix_x5_sys_v2_1.sh
	Change-Notes build_minix_x5_sys_v2.sh

