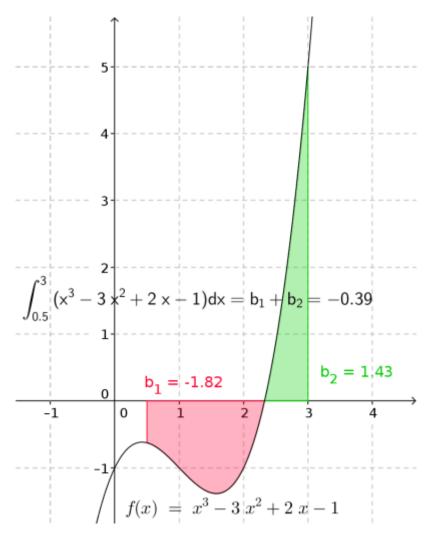
2025/11/30 22:33 1/3 Bestimmtes Integral

Bestimmtes Integral

Ein bestimmtes Integral ermittelt aus dem beiden Teilflächen, die von einer Funktion f(x) und der x-Achse eingeschlossen werden, den Flächeninhalt zwischen zwei Grenzen a und b.

Skizze:



Die Funktion lautet $< m > f(x) = x^3 - 2 x^2 + 2 x - 1 < / m >$ und die Integralgrenzen wurde zu a=0,5 und b=3 festgelegt.

Die linke (rote) Fläche liegt unterhalb der x-Achse und liefert daher einen negativen Flächenbeitrag. Die rechte (grüne) Fläche liefert liegt oberhalb der x-Achse und liefert daher einen positiven Flächenbeitrag. Zusammen ergibt sich ein negativer Wert, da die rote Fläche größer ist als die grüne.

Man kann dies auch mit einer "Gewinn/Verlust"-Rechnung als Ananlogie gleichsetzen. Dabei wäre die rote Fläche der Verlust und die grüne Fläche der Gewinn. Das Integral liefert als den Gesamtverlust/gewinn. Die Verlust heben die Gewinn auf und umgekehrt. Hier: **Gesamtverlust in Höhe von -0,39 FE.** Die innerhalb des Integrals liegende Nullstelle spielt bei der Berechnung keine Rolle.

$$f(x) = x^{3} - 2x^{2} + 2x - 1$$

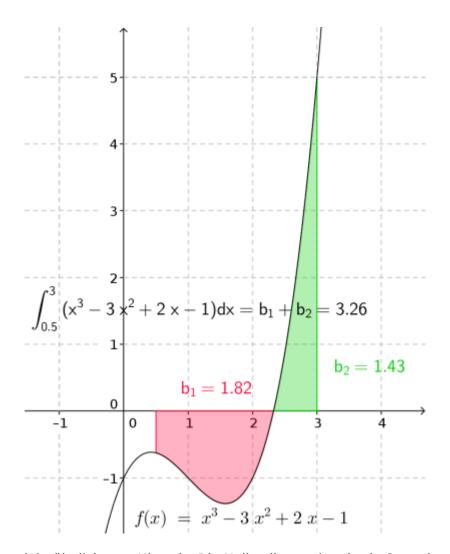
$$F(x) = \frac{1}{4}x^{4} - \frac{2}{3}x^{3} + x^{2} - x + C$$

$$\int_{0,5}^{3} f(x) \cdot dx = [F(x)]_{0,5}^{3} = F(3) - F(0,5) = -0,75 - (-0,36) = -0,39$$

$$Vgl.: b_{1} + b_{2} = -1,82 + 1,43 = -0,39$$

Flächenberechnung mittels Integral

Wird im gleichen Bespiel nach der eingeschlossenen Fläche zwischen f(x) und der x-Achse gefragt, so ist nach den absoluten (positiven) Flächen gefragt. In diesem Fall müssen die einzelnen Flächen (hier: $< m > b \ 1 < / m >$ und $< m > b \ 2 < / m >$) als positive Werte ermittelt und aufaddiert werden.



Die Rechnung dazu sieht ähnlich aus. Hinweis: Die Nullstelle wurde mittels Geogebra ermittelt. Hier kommen die bekannten Verfahren zum Einsatz (Probe, Horner-Schema, Polynom-Division, pq-Formel)

Das Ergebnis lässt sich in diesem Fall als echte Gesamtfläche interpretieren z.B. als "Grundstücksfläche", die aus Teilstücken zusammengesetzt wird. Bei einer solchen Berechnung würden sich einzelne Geländeflächen demnach nicht gegenseitig "aufheben", sondern jeder

https://www.kopfload.de/ Printed on 2025/11/30 22:33

2025/11/30 22:33 3/3 Bestimmtes Integral

Geländestück liefert einen eigenen Betrag zur Gesamtfläche. Hier: Gesamtfläche von 3,26 FE

$$f(x) = x^3 - 2x^2 + 2x - 1$$

$$F(x) = \frac{1}{4}x^4 - \frac{2}{3}x^3 + x^2 - x + C$$

ermittelte Nullstelle: $x_N = 2,32$

$$[A] = |\int_{0,5}^{3} f(x) \cdot dx| = |[F(x)]|_{0,5}^{3} = |[F(x)]|_{0,5}^{2,32} + |[F(x)]|_{2,32}^{3}$$

$$= |F(2,32) - F(0,5)| + |F(3) - F(2,32)|$$

$$= |-2,18 - (-0,36)| + |-0,75 + (-2,18)| \approx 3,26$$

$$Vgl.: b_{1} + b_{2} = 1,82 + 1,43 \approx 3,26$$

From:

https://www.kopfload.de/ - kopfload - Lad Dein Hirn auf!

Permanent link:

https://www.kopfload.de/doku.php?id=lager:mathe:integral:flaechen_berech&rev=1427391361

Last update: 2025/11/19 16:13

