Dies ist eine alte Version des Dokuments!
Hinweis zu den Herleitungen: Bei den Herleitungen wird jeweils schrittweise ausgeklammert und anschließend werden die gleichen Terme zusammengefasst.
Herleitung:
Erklärung: Zunächst wird die Potenz ² als Produkt der Klammer aufgelöst. Im Anschluss wird die erste Variable der vorderen Klammer mit allen Variablen der hinteren Klammer multipliziert und mit dem entsprechenden Vorzeichen (hier immer +) aufaddiert (a * a + a * b). Das Gleiche wird mit der zweiten Variable der ersten Klammer und allen Variablen der hinteren Klammer getan (b * a + b * b). Nun kann zusammen gefasst (a * b + b * a = 2 a * b) bzw. vereinfacht (a a = a^2 bzw. b * b = b^2)werden.
Herleitung:
Erklärung: Die Vorgehensweise ist dieselbe wie bei der ersten Binomischen Formel. Allerdings ist auf das Vorzeichen der Variablen zu achten.
Herleitung:
Erklärung: Die Vorgehensweise ist dieselbe wie bei den ersten beiden Binomischen Formel. Die beiden mittleren Terme heben sich gegenseitig auf, so dass die beiden quadratischen Terme übrig bleiben.
Vereinfachen Sie die Ausdrücke, indem Sie die binomischen Formeln anwenden:
Aufgabe | Ergebnis |
---|---|
Aufgabe 11 | |
a) | |
b) | |
c) | |
Aufgabe 12 | |
a) | |
b) | |
c) | |
Aufgabe 13 | |
a) | |
b) | |
c) | |
Aufgabe 14 | |
a) | |
b) | |
Aufgabe 15 | |
a) | |
b) | |
Aufgabe 16 | |
a) | |
b) | |
Aufgabe 17 | |
a) | |
b) | |
Aufgabe 18 | |
a) | |
b) | |
Aufgabe 19 | |
a) | |
b) | |
Aufgabe 20 | |
a) | |
b) |
Ergänzungen