Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/WH49045962/wwwroot/inc/parser/handler.php on line 1552 lager:mathe:differential:funkt_synthese [Kopfload.de - Lad Dein Hirn auf!]

Benutzer-Werkzeuge

Webseiten-Werkzeuge


lager:mathe:differential:funkt_synthese

Funktionssynthese

Übungsaufgaben Funktionssynthese

1. Ermitteln Sie die Funktionsgleichung der ganzrationalen Funktion 3. Grades, die eine Nullstelle bei $ x_1 = 2 $, eine Wendestelle bei $x_2 = \frac{4}{3}$, die y-Achse bei 4 in einem Maximum schneidet.

Begriffserklärung zum Mathematikbuch Pfeffer Auflage 7:

Begriff aus Buch Unsere Bedeutung
Flachpunkt Sattelpunkt
Abszisse x-Achse
Wendetangente Tangente im Wendepunkt

Hinweise, welche Gleichungen aus den Eigenschaften erstellt werden können:

(nur zum Üben NICHT für die Formelsammlung):

Eigenschaft mathematische Bedingung
Extremum1) in xE f´(xE) = 0
Wendepunkt in W(xW , yW ) f´´ (xW) = 0 und f(xW) = yW
Nullstelle bei xN f(xN) = 0
Punkt P(xP, yP ) auf f(x) f(xP) = yP
Tangente t(x) = mt x + b bei xt f´(xt) = mt und f(xt) =t(xt)
Tangente t(x) im Punkt P(xP, yP ) ist parallel zur Geraden g(x) = mg x + b f´(xP) = mg und f(xP) = yP
f(x) schneidet die Gerade g(x) = mg x + b auf der y-Achse f(0) = b
Wendetangente t(x) = mt x + b bei xW f´´ (xW) = 0 und f´(xW) = mt

Hinweis: t(xt) ist ein eigens zu berechnender Wert!

Cornelsen S. 184 Aufgabe 2 Lösungsansätze für die Eigenschaften in der Reihenfolge des Aufgabentextes.

Aufgabe Ansatz
a 3. Grades
a_2 = a_0 = 0
f(-1)=0
f´(2) = 1
b 3. Grades
a_2 = a_0 = 0
f(2)=-4
f´(2) = 0
c 3. Grades
a_0 = 0
f´(2) = 0
f´´(4) = 0
f´(4) = -4
d 3. Grades
f(0)= 7,2
f´(0) = 0
f(-2)=0
f(3)=0
e 4. Grades
a_3 = a_1 = 0
f(2)=0
f´(2) = 2
f´´(-1) = 0
f 5. Grades
a_4 = a_2 = a_0 = 0
f(-1)=-2
f´(-1) = 0
f(2)=-13,25
Lösung Geogebra
g 3. Grades
a_0 = 0
f(1)=2
f´(1) = 0
f´´(1) = 0
h 3. Grades
a_2 = a_0 = 0
f(6)=0
f´(0) = 2
f´´(0) = 0
i 4. Grades
a_0 = 0
f´(0) = 0
f(4)=0
f´(4) = 0
f´(1) = 12
j 4. Grades
a_3 = a_1 = 0
f(-2)=0
f(1)=-3
f´(1) = -1
k 3. Grades
f(0)=0
f(-3)=0
f´(3) = 0
f(3) = 6
l 3. Grades
f(4)=0
f´(4)=0
f´´(8/3) = 0
f´(8/3) = -4/3
m 4. Grades
f(-1)=0
f´(-1)=0
f´(2) = 0
f´´(2) = 0
f´(2) = 6,75
1)
Extremum: Hochpunkt oder Tiefpunkt
Warning: count(): Parameter must be an array or an object that implements Countable in /home/WH49045962/wwwroot/lib/plugins/discussion/action.php on line 425

Ergänzungen

Geben Sie Ihren Kommentar ein. Wiki-Syntax ist zugelassen:
G O D F G
 
lager/mathe/differential/funkt_synthese.txt · Zuletzt geändert: 19.04.2020 11:17 von richard